
1

Abstract

This paper presents the implementation of DFSF, a con-
tract-based framework for flexible scheduling in real-time
networks. The initial implementation of DFSF provides the
ability to make dynamic bandwidth reservations using a dis-
tributed acceptance test that ensures the overall network
schedulability. It has been implemented using the Real-
Time Ethernet Protocol (RT-EP), which is a software-based
token-passing Ethernet protocol for real-time applications,
that does not require any modification to existing Ethernet
hardware.

1. Introduction1

FIRST (Flexible Integrated Real-Time Systems Tech-
nology) [6] is an EU project in which a flexible scheduling
framework (FSF) has been developed with the aim of com-
bining the hard real-time guarantees that are required in
many real-time systems, with more flexible timing require-
ments that avoid the large pessimism of the hard real-time
scheduling techniques and let the system resources be fully
utilized to achieve the highest possible quality of service.
FSF is based on establishing service contracts that repre-
sent the complex and flexible requirements of the applica-
tion, and which are managed by the underlying system.

Together with other goals, FSF is designed to support
applications with requirements for distribution. The first
step towards distribution in this context is the ability to
support service contracts for the networks used to intercon-
nect the different processing nodes in the system. Similar
to the FSF implementation in the processors, the contracts
on the network allow the application to specify its mini-
mum utilization (bandwidth) requirements, so that the
implementation can make guarantees or reservations for
that minimum utilization. The distributed part of FSF is
called DFSF.

This paper presents an overview of the DFSF services
and their application program interface (API), and
describes the implementation that has been made using the
Real-Time Ethernet Protocol (RT-EP) [4] which is a soft-
ware-based token-passing protocol in a bus that uses fixed-
priority scheduling, and does not require any modification
to existing Ethernet hardware. The implementation has
been added to an FSF system running on top of MaRTE OS
[1], which is a real-time kernel on which our research
group has been working in the last few years.

2. Distributed Flexible Scheduling
One of the key elements of the FSF API is the contract,

which is an abstract data structure used by the application
to specify its timing and flexible scheduling requirements.
The contract has many attributes such as those required to
specify how the application can make use of any spare
capacity that the system may give to it, or the notification
mechanisms for deadline misses or execution budget over-
runs, for instance. Table 1 shows the main attributes that
are relevant to the network contracts. The minimum budget
and maximum period allow specifying a guaranteed band-
width reservation.

1. This work has been funded in part by the Ministerio de Educación y
Ciencia of the Spanish Government under grant number TIC2002-04123-
C03-02 (TRECOM), and by the IST Programme of the European
Commission under project IST-2001-34820 (FIRST).

Table 1. Main contract attributes

Name Description

minimum
budget

Minimum execution capacity per server
period

maximum
period

Maximum server period

network id Identifies the network for which the
contract is negotiated; if null, the contract is
negotiated on a processing node

deadline The deadline of the server

D=T Whether the server’s deadline is equal to
the period or not

Adding Contract-Based Reservation Services to a
Hard Real-Time Ethernet Protocol

Michael González Harbour, José María Martínez, Juan López Campos,
J. Javier Gutiérrez, and Julio L. Medina

Departamento de Electrónica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{mgh, martinjm, lopezju, gutierjj, medinajl}@unican.es

2

Once the contract has been prepared by the application,
it has to be negotiated. During the negotiation the system
checks that it has enough resources to guarantee the mini-
mum requirements specified in the new contract, together
with all the contracts currently accepted in the system. If
so, it accepts the new contract creating a server for it and
readjusts the distribution of any spare capacity that may
have been assigned to the current contracts.

The server is a software entity that keeps track of the
consumed resources and effectively limits the amount of
budget consumed both for processors and networks. In the
processors, one or more threads may be bound to a server;
its execution budget is consumed whenever one of those
threads is running. The deadline specified in the contract is
used by the system to set the degree of urgency of each
server, with the guarantee that the specified budget will be
provided before the deadline in each server period, as long
as the application requested execution for that budget at the
beginning of the server period.

As an abstract framework, FSF can be implemented on
top of different scheduling strategies. For instance, it has
been implemented in SHaRK with an EDF-based scheduler
and using Constant Bandwidth Servers as the underlying
server mechanism [8], and also in MaRTE OS with a fixed
priority scheduler and using sporadic servers for imple-
menting the FSF servers [7]. Since these implementations
share the same API, applications can use FSF in a totally
platform-independent manner.

For the DFSF implementation to keep track of con-
sumed network resources and to enforce the budget guaran-
tees it is necessary that the information is sent and received
through specific DFSF services. To provide communica-
tion in this context we need to create objects similar to the
sockets used in most operating systems to provide message
communication services. We call these objects communica-
tion endpoints, and we distinguish send and receive end-
points.

A send endpoint contains information about the network
to use, the destination node, and the port that identifies a
receive endpoint. It is bound to an FSF network server that
contains the scheduling parameters of the messages sent
through that endpoint, keeps track of the resources con-
sumed, and limits the bandwidth to the amount reserved for
it by the system. It provides message buffering for storing
messages that need to be sent.

A receive endpoint contains information about the net-
work and port number to use. It provides message buffer-
ing for storing the received messages until they are
retrieved by the application, either with a blocking or non
blocking message receive operation. A receive endpoint
may get messages sent from different send endpoints,
located in the same or in different processing nodes.

The main operations of the FSF API involved in the net-
work contracts are the following:
•initialize a contract
•set contract attributes (see Table 1)
•negotiate a contract, obtaining a network server
•create a send endpoint
•bind a network server to a send endpoint
•send a message through a send endpoint
•create a receive endpoint
•receive a message from a receive endpoint

The connection between a send and a receive endpoint is
established by specifying at the creation of both the net-
work id and the port number to use, and by specifying the
destination node in the sender’s end. Figure 1 shows the
main elements involved in the communication with DFSF.
To establish a communication path the application has to
select a network and choose a port to be used in it. At the
sending end it creates a send endpoint with that network id
and port and with the destination node, initializes a con-
tract, and sets its attributes specifying its timing require-
ments related to the communication. It then negotiates the
contract. If accepted, a server id is returned, and it is used
to bind the associated server with the send endpoint. At the
receiver’s end, a receive endpoint is created specifying the
same network id and port. The budget consumption man-
agement is implemented in the server, which is bound to
the send endpoint.

Once the communication path has been established it
may be used to send and receive messages though the asso-
ciated operations in the API. The FSF network server will
keep track of any consumed budget, in order to guarantee
the bandwidth reservations.

3. Implementation
A major subset of the DFSF framework has been imple-

mented on top of the RT-EP real-time ethernet protocol [4].
Two important functionalities had to be added to the proto-
col. On the one hand, the ability to manage budget-based
servers, and on the other hand the distributed contract
negotiations. For this initial implementation we have not
implemented the spare capacity facilities defined in FSF.

To manage communication budgets, the underlying
scheduling mechanism of RT-EP, which is fixed priorities,

Receive endpointSend Endpoint

receive

send

Application
thread

network

FSF
server

Application
threadcontract

Figure 1. Communication elements in DFSF

3

was changed into the sporadic server scheduling policy [5].
Under this policy, each server is assigned a priority, a trans-
mission capacity (measured in network packets) and a
replenishment policy. The priority is set according to the
server’s deadline, the capacity is initialized to the mini-
mum budget, and the replenishment period is set equal to
the server’s period. When the capacity is larger than zero,
packets can be sent in the RT-EP network at the server’s
priority; each packet sent decreases the capacity by one and
enqueues a replenishment operation to occur one replenish-
ment period later. When the capacity is zero, packets can
only be sent at a background priority level. When a replen-
ishment operation is due, it consists of increasing the cur-
rent server’s capacity.

In order to make distributed contract negotiations, the
information with the contract information is replicated in
all the nodes. Negotiation operations are mutually exclu-
sive so that the results of negotiation are consistent. This is
accomplished with a special negotiation token that has
been created. The results of each negotiation operation are
propagated to all the other nodes so that they can update
the contract information. The negotiation token is only
released for a new negotiation once the operation has been
completed and its results have been propagated to all the
nodes.

The information related to the state of the negotiation,
the negotiation token, and the results of a negotiation are
transmitted with the RT-EP packets, in a way completely
independent of the RT-EP behavior. In this way we do not
affect the RT-EP operation, and we can take advantage of
the error detection and recovery features in a transparent
way.

The implementation of DFSF has been made in Ada,
although both C and Ada interfaces are provided. Three
software modules have been used:
•DFSF.Shared_Info: This package contains a protected

object (that provides mutual exclusion) with the informa-
tion about the contracts that is shared among all the
nodes. The information allows a node to negotiate a new
contract, or renegotiate a previous one.

•DFSF.Servers: This package contains a protected object
that stores the information relative to a server that is local
to the node where it is created, and therefore needs not be
shared among the different nodes. The most important
piece of this information is the current budget of each
server.

•DFSF.Negotiation: This package contains a protected
object that implements the state machine associated with
the contract negotiations, and all the associated informa-
tion. To negotiate a contract there is a negotiation token
that must be acquired to ensure mutual exclusion. Once
the negotiation is finished the information must be prop-

agated to all the other nodes. The information associated
with these operations is circulated in the token ring, and
this package manages it as a function of the current nego-
tiation state of each node.
Figure 2 shows the negotiation state diagram. The node

starting the negotiation successively switches from the Idle
state to Acquiring_Negotiation_Token, Negotiating, and
Waiting_To_Release_Token. Meanwhile, the nodes not
making the negotiation, switch to the Waiting state, where
they await the information with the negotiation result.

The token-passing behavior of RT-EP eases the propaga-
tion of the negotiation token and contract information to all
the nodes. In a different network this propagation could be
achieved by explicit broadcast or with regular protocol
messages.

4. Evaluation
DFSF has been implemented on top of RT-EP, on

MaRTE OS platforms, and tested in different configura-
tions with a single 100 Mbits/s ethernet. In this section we
show some of the evaluation results that were obtained.

Figure 3 shows the time it takes to make a negotiation in
a system with four processing nodes, in which all the nego-

Idle *

Waiting

Acquiring_
Negotiation_Token

Waiting_To
Release_Token

Negotiation, renegotiation, or
server cancellation

Release_Negotiation_Token,

Claim_Negotiation_Token

Add_Server, Update_Server,
Delete_Server

Negotiation Finished

Negotiating

Negotiation Finished&

Full RTEP

Full RTEP
token rotation

token rotationfull RTEP token rotation

Figure 2. Negotiation state diagram

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Servers

Ti
m

e
(m

s)

Figure 3. Network negotiation times

4

tiations are made by a single node, with delays between
negotiations. The contracts specify a network utilization of
1%, and have deadlines equal to periods. The admission
test in this case is a plain rate monotonic utilization test,
which gives constant time in relation to the number of serv-
ers, and has a utilization bound of 69%. Of course, other
more elaborate admission tests may be used. Other evalua-
tion results show that the negotiation times increase when
they are made within a small interval, because during the
time it takes to propagate the results of the negotiations to
the other nodes, the negotiation token is not available.

Table 2 contains the results regarding the transmission
times in DFSF. Because we do not have synchronized
clocks we measure the time it takes to send a message of
maximum size to a remote node and get a similar message
back. We can see that there is a difference in the worst case
measured times depending on whether there is contention
with lower priority messages or not. The reason is that in
the latter case the non preemptability of network packets
imposes a bounded blocking effect on the higher priority
messages.

The overhead for the new information sent in the net-
work packets is relatively small: just 29 bytes. This makes
the total packet overhead still less than the minimum ether-
net packet size, and represents only 2.39 µs on a 100Mbit/s
ethernet. It has to be compared with the 1492 bytes of a
maximum packet size, or with transmission times in the
range of 0.5 ms, to see that it represents a very small over-
head.

The effort of implementing DFSF on top of RT-EP has
been moderate, requiring 2093 lines of code for the actual
implementation, plus adding 120 lines of code to RT-EP.

The implementation of DFSF has been successfully
used to implement the distributed control system of an
industrial robot. The original software based on fixed prior-
ities was easily migrated to the new framework by just add-
ing the contract information at the application layer, and
modifying the middleware layer [2][3] to use the DFSF
API.

5. Conclusions
In this paper we have presented DFSF, a flexible net-

work scheduling framework. Applications can encapsulate
their flexible timing requirements inside a contract that is
negotiated with the system. The implementation of DFSF
includes a distributed negotiation mechanism as well as a
new scheduler that manages budget consumption and
enforces the bandwidth reservations.

The implementation has proved to be feasible, efficient,
and easy to use. It has been successfully used to implement
a distributed controller for an industrial robot.

For the future, we plan to introduce the missing FSF
facilities in the distributed implementation, starting with
the ability to share any spare capacity that there may be in
the network, using the same quality-of-service parameters
specified in the contracts and already used by the processor
FSF schedulers.

REFERENCES
[1] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for

Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[2] Juan López Campos, J.Javier Gutiérrez and Michael González
Harbour. “The Chance for Ada to Support Distribution and
Real Time in Embedded Systems. Proceedings of the
International Conference on Reliable Software Technologies,
Palma de Mallorca, Spain, in Lecture Notes in Computer
Science, Vol. 3063 , Springer, June 2004.

[3] L. Pautet and S. Tardieu. “GLADE: a Framework for Building
Large Object-Oriented Real-Time Distributed Systems”.
Proc. of the 3rd IEEE Intl. Symposium on Object-Oriented
Real-Time Distributed Computing, (ISORC'00), Newport
Beach, USA, March 2000.

[4] José María Martínez and Michael González Harbour. “RT-EP:
A Fixed-Priority Real Time Communication Protocol over
Standard Ethernet”. to appear in the Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2005, York, UK, June 2005.

[5] Sprunt, B., Sha, L. and Lehoczky, J.P., “Aperiodic Task
Scheduling for Hard-Real-Time Systems”. The Journal of
Real-Time Systems, Kluwer Academic Publishers, 1, pp. 27-
60, 1989.

[6] FIRST web page. IST Programme of the European
Commission project IST-2001-34820.
http://www.idt.mdh.se/salsart/first/

[7] FSF/MaRTE OS home page.
http://marte.unican.es/fsf/

[8] FSF/SHaRK home page.
http://shark.sssup.it/contrib/first/first.html

Table 2. Transmission times using DFSF

Operation
Worst
(ms)

Avg
(ms)

Best
(ms)

Send a message to a remote
node, execute a handler there,
and receive a reply message, no
contention

1.398 1.127 1.111

The same, with contention with
other lower priority messages

2.517 1.211 1.157

