
Abstract

This paper presents a work-in-progress design and imple-
mentation of a software-based token-passing Ethernet pro-
tocol for multipoint communications in real-time applica-
tions, that does not require any modification to existing
Ethernet hardware. Because the protocol is based on fixed
priorities, applications using it can be easily modeled using
common techniques for fixed priority systems, and well-
known schedulability analysis techniques can be applied.
We call this protocol RT-EP (Real-Time Ethernet Protocol).

1. Introduction1

Ethernet is by far the most widely used local area net-
working (LAN) technology in the world today. Unfortu-
nately, Ethernet uses a non-deterministic arbitration
mechanism (CSMA/CD) which makes it unsuitable for
real-time communications. Several approaches and tech-
niques have been used to make Ethernet deterministic in
order to take advantage of its low cost and higher speeds
than those of real-time field buses available today (like the
CAN bus [9], for example). Some of these approaches are
the modification of the Medium Access Control [6], the
addition of transmission control [5], a protocol using time-
triggered traffic [3], or the usage of a switched Ethernet [7].

Our research group has been working in the last few
years on the development of MaRTE OS [1], a real-time
kernel for embedded applications. The objective of this
work is to add a real-time communication network to
MaRTE. We want to achieve a relatively high speed mecha-
nism for real-time communications at a low cost, while
keeping the predictable timing behavior required in dis-
tributed hard real-time applications. The communications
protocol proposed in this work can be classified as an addi-
tion of a transmission control layer over Ethernet, since it is
basically a token-passing protocol in a bus [8].

The paper is organized as follows: Section 2 describes
how the communication protocol works. Section 3 gives
details about the implementation and the model describing
the timing behavior of its implementation. In Section 4 we
provide some results on the overhead introduced by this
protocol. Finally, Section 5 gives our conclusions.

2. Description of the Communication
Protocol

RT-EP has been design to avoid collisions in the Ether-
net media by the use of a token. Each station (processing
node or CPU) has a transmission queue, which is a priority
queue where all the packets to be transmitted are stored in
priority order. Each station also has a set of reception
queues that are also priority queues. Packets with the same
priority are stored in FIFO order. The number of reception
queues can be configured depending on the number of
application threads (or tasks) running in the system and
requiring reception of messages. Each application thread
should have its own reception queue attached. The applica-
tion has to assign a number, the channel ID, to each appli-
cation thread that requires communication through the
protocol. This channel ID is used for the purpose of identi-
fying communication endpoints in a given station.

The network is logically organized as a ring. Each sta-
tion knows which other station is its predecessor and its
successor, so the logical ring can be built. The protocol
works by rotating a token in this logical ring. The token
holds information about the station having the highest pri-
ority packet to be transmitted and its priority value. The
network operates in two phases. The first phase corre-
sponds to the priority arbitration, and the second phase to
the transmission of an application message.

For the transmission of one message, an arbitrary station
is designated as the token_master. During the priority-arbi-
tration phase the token travels through the whole ring, visit-
ing all the nodes. Each station checks the information in the
token to determine if one of its own packets has a priority
higher than the priority carried by the token. In that case, it

1. This work has been funded by the Comisión Interministerial de
Ciencia y Tecnología of the Spanish Government under grant TIC99-
1043-C03-03

A Multipoint Communication Protocol based on Ethernet for Analyzable
Distributed Real-Time Applications

José María Martínez, Michael González Harbour, and J. Javier Gutiérrez

Departamento de Electrónica y Computadores
Universidad de Cantabria
39005-Santander, SPAIN

chema@gmx.net, mgh@unican.es, gutierjj@unican.es

changes the highest priority station and associated priority
in the token information; otherwise the token is left
unchanged. Then, the token is sent to the successor station.
This process is followed until the token arrives at the
token_master station, finishing the arbitration phase.

In the message-transmission phase the token_master sta-
tion sends a message to the station with the highest priority
message, which then sends the message. The receiving sta-
tion becomes the new token_master station.

The maximum information size held by a packet is lim-
ited by the information field in an Ethernet frame, and it
can vary from 0 to 1492 bytes) [2]. Fragmentation of mes-
sages at this layer is not allowed.

3. Implementation and Modeling of RT-EP
The functionality and architecture of the multipoint

communication protocol are shown in Figure 1. This proto-
col offers three functions to any application using the net-
work: send_info (to send a message), recv_info (to receive
a message), and init_comm (to initialize the network). The
application threads encapsulate the information in a mes-
sage type, which is used both for transmission and recep-
tion. This message type contains the destination station
address, the destination channel ID, and the priority of the
message. When a message is sent, it is stored in the priority
queue on the transmitting station. There is only one thread,
the Main Communication Thread, that is responsible of
reading the packets from the transmission queue and of
writing the received packets into the reception queues. The
highest priority packet to be transmitted determines the pri-
ority used for the priority arbitration token, as we described
in the previous section.

The protocol has been implemented in GNU/Linux,
directly over the network link layer, to test the design and
to have a quick estimation of the overheads. In the near
future the protocol will be implemented in MaRTE OS. We
use RT-EP-token-packets to send the tokens and RT-EP-
info-packets to send the information. To identify the sta-

tions, RT-EP uses the ethernet MAC addresses. There is no
need for routing the information since we are working in a
local area network.

In order for this protocol to work, the maximum number
of communicating threads running in the system must be
known at configuration time. This is the usual case in this
kind of real-time system.

3.1. RT-EP Frame Formats

The frame formats used in our protocol goes into an Eth-
ernet frame, which for Ethernet II has the following struc-
ture [2]:

The Type field identifies what type of high-level network
protocol is being carried in the data field. We use a value of
0x1000 for the Type field, which represents an unused
number protocol, which could be changed if the protocol is
registered in the future.

RT-EP packets are carried into the Data field of the Eth-
ernet frame, that must be at least 46 bytes long. Due to this
restriction, even though our packets can be less than 46
bytes long, a 46 bytes data field will be built. Our protocol
has two types of packets:

•Token Packet: it is used to transmit the token and has the
following structure:

The Packet Identifier field is present also in the Info
Packet and is used to identify the type of the packet. It
can hold two different values for this type of packet:
Token (used in the arbitration phase to get the highest
priority packet) or Transmit Token (it grants the
destination station permission to transmit a message).
The Token Identifier will be used in the future to handle
the loss of tokens. The Priority indicates the highest
priority element on the LAN at the rotation time. The
Station Address stores the address of the station with the
highest priority packet. Finally, the 34 Extra bytes are
needed to be compliant with the Ethernet protocol.

•Info Packet: it is used to transmit data and has the follow-
ing structure:

S
oc

ke
t

M
ai

n
C

om
m

un
ic

at
io

n
T

hr
ea

d

Priority Queues:
- One Tx queue
- Many Rx queues

Tx Queue

Rx Queue

Rx Queue

Rx Queue

Init_Comm

Send_Info

Recv_Info

T
as

ks

L
A

N

Figure 1. Functionality and details of RT-EP

8 bytes 6 bytes 6 bytes 2 bytes 46-1500 bytes 4 bytes

Preamble Destination
Address

Source
Address

Type Data Frame Check
Sequence

1 byte 1 byte 2 bytes 6 bytes 34 bytes

Packet
Identifier

Token
Identifier

Priority Station
Address

Extra

1 byte 1 byte 2 bytes 2 bytes 2 bytes 0-1492 bytes

Packet
Identifier

Reserved Priority Channel ID Info
Length

Info

The Packet Identifier has a value corresponding to an
Info Packet. There is one Reserved byte for further use.
The Priority field holds the priority of the packet being
transmitted. The Channel ID is used to identify the
destination queue in the destination station. The Info
Length is the size of the data stored on the Info field. If
the information to be transmitted is less than 38 bytes
long, padding is performed in order to get the 46 data
bytes required in an Ethernet frame.

3.2. RT_EP as a State Machine

RT-EP can be described as a state machine for each sta-
tion in order to understand its functionality and obtain the
relevant parameters for the different operations involved in
the timing model. Figure 2 shows the states and the transi-
tions between them, which are shortly described next:

•Offline. It is the starting state reached during configura-
tion time. Each station reads a configuration file describ-
ing the token ring and gets configured as one of its
stations. The station configured as the initial
token_master is set to the Send_Initial_Token state and
the others are set to the Idle state.

•Idle. The station listens for the arrival of any packet.
When a packet is received, a check is made to determine
it’s type: if it is an Info Packet the station switches to the
Recv_Info state; if it is a Token Packet, two different
states can be reached: Send_Info (if a Transmit Token is
received), or Check_Token (when a regular Token is
received).

•Send_Initial_Token. The station reaching this state
becomes the token_master. A token is sent to the succes-
sor station, and the current station switches to the Idle
state.

•Check_Token. If the station isn't the token_master the
Send_Token state is reached; if it is, it switches to the
Send_Info state if the Station Address is the current sta-
tion, or to the Send_Permission state when not.

•Send_Token. The station compares the priority of the
token with the highest priority element on its transmis-

sion queue, updates the token if its own priority is higher,
and sends the token to next station. Then it switches to
the Idle state.

•Send_Permission. The token_master role is lost and a the
Transmit Token is built and sent to the highest priority
station.

•Send_Info. This is the state in which a station has the
highest priority packet on the ring and it is allowed to
transmit it.

•Recv_Info. The information is written into the appropri-
ate reception queue and the station switches to the
Send_Initial_Token state, becoming the token_master.

3.3. MAST Model of RT-EP

This subsection draws out the modeling information of
RT-EP according to MAST (Modeling and Analysis Suite
for Real-Time Applications) [4]. This methodology pro-
vides an open source set of tools that enables engineers
developing real-time applications to check the timing
behavior of their application, including schedulability anal-
ysis for checking hard timing requirements. MAST
includes the model of a fixed priority network as a special-
ized class of a processing resource. The model of the net-
work encapsulates the relevant information to ensure that
the schedulability analysis can be performed. In addition,
MAST defines the network drivers, with parameters that
represent the overheads of the activities executed by the
processors to manage the communication packets.

We can use the MAST model to characterize RT-EP by
obtaining the specific values for the network parameters. In
order to have a complete description of the RT-EP model
we must extend MAST by adding a new network driver
(based on the existing packet_driver) which includes the
operations to send and receive packets performed by the
Main Communication Thread, the thread itself, and the
protocol operations to manage and pass the tokens. The
complete information to model RT-EP is described next
using the MAST notation.

RT-EP Packet Driver. It is a specialization of a packet
driver in which there is an additional overhead associated
to passing the token. Its main attributes are:

•Packet Send Operation. It corresponds to the code exe-
cuted in the Idle state followed by the Send_Info state.

•Packet Receive Operation. It corresponds to the code
executed in the Idle state followed by the Recv_Info state
and by the Send_Initial_Token state.

•Number of Stations.

•Token Manage Operation. Time required to send the
token in the Send_Token or the Send_Permission states.

Id le

Recv Info Send Info

Check
Token Send Initia l

Token

Send
Token

Send
Permission

Offline

Figure 2. RT-EP state machine in each station

•Token Check Operation. Code executed in the Idle state
followed by the Check_Token state.

The following attributes are used to characterize the
Fixed_Priority_Network resource for RT-EP:

•Max Packet Transmission Time and Min Packet Trans-
mission Time. They include only the time spent to send
information bytes (1500 or 46 bytes).

•Packet Overhead. This is the overhead caused by the pro-
tocol information that needs to be sent before or after
each packet. It is calculated as:

(N+1)*(Min_PTT+EPB+TCO+TMO)
which is the time spent to send a number of tokens equal
to the number of stations, N, performing a complete cir-
culation of the Token, plus one Transmit Token. The time
to send a token is calculated as the sum of the Min Packet
Transmission Time, Min_PTT, the time to send the Ether-
net Protocol Bytes, EPB, the time of the Token Check
Operation, and the time of the Token Manage Operation.

•Max Blocking. The maximum blocking caused by the
non preemptability of message packets. In RT-EP, it is
calculated as:

N*(Min_PTT+EPB+TCO+TMO) + PWO+Max_PTT
that represents a complete circulation of the token (N
tokens sent), plus the blocking effect caused by the trans-
mission of a lower priority packet (the Packet Worst
Overhead and the Maximum Packet Transmission Time).

4. Overhead estimation
We have measured the CPU overheads of the protocol

under GNU/Linux. Since this isn't a real-time OS, we have
taken average values of our measurements. The times have
been measured with a platform composed of two PCs (a
Pentium 200 MMX and a Pentium 233 MMX) running
GNU/Linux and connected by means of a null cable at 10
Mbps. The following table shows the average execution
times of the operations involved in each state of the state
machine description:

5. Conclusions
We have presented an implementation of a software-

based token-passing Ethernet protocol for multipoint com-

munications in real-time applications, that does not require
any modification to existing Ethernet hardware. The proto-
col is based on fixed priorities and thus common tools for
fixed priority schedulability analysis can be used. A precise
timing model of the protocol has been obtained, which
enables us to perform a schedulability analysis of a distrib-
uted application using this protocol.

Future work plans for this protocol are to extend it to
take into account three kinds of failures: failure of a station,
loss of a packet, or delay in handling a packet that could
result in the duplication of a token. In addition, we have to
port it to MaRTE OS.

References
[1] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for

Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[2] Charles E. Spurgeon Ethernet: The definitive Guide. O’Reilly
Associates, Inc. 2000.

[3] Paulo Pedreiras, Luis Almeida, Paolo Gar. “The FTT-Ethernet
protocol: Merging flexibility, timeliness and efficiency”.
Proceedings of the 14th Euromicro Conference on Real-Time
Systems, Vienna, Austria, June 2002.

[4] M. González Harbour, J.J. Gutiérrez, J.C. Palencia and J.M.
Drake: “MAST: Modeling and Analysis Suite for Real-Time
Applications”. Proceedings of the Euromicro Conference on
Real-Time Systems, Delft, The Netherlands, June 2001

[5] Chiueh Tzi-Cker and C. Venkatramani. “Fault handling
mechanisms in the RETHER protocol”. Symposium on Fault-
Tolerant Systems, Pacific Rim International, pp. 153-159,
1997.

[6] Jae-Young Lee, Hong-ju Moon, Sang Yong Moon, Wook
Hyun Kwon, Sung Woo Lee, and Ik Soo Park. “Token-
Passing bus access method on the IEEE 802.3 physical layer
for distributed control networks”. Distributed Computer
Control Systems 1998 (DCCS'98), Proceedings volume from
the 15th IFAC Workshop. Elsevier Science, Kidlington, UK,
pp. 31-36, 1999.

[7] Choi Baek-Young, Song Sejun, N. Birch, and Huang Jim.
“Probabilistic approach to switched Ethernet for real-time
control applications”. Proceedings of Seventh International
Conference on Real-Time Computing Systems and
Applications, pp. 384-388, 2000.

[8] ANSI/IEEE Std 802.4-1990. “IEEE Standard for Information
technology--Telecommunications and information exchange
between systems--Local and metropolitan area networks--
Common specifications--Part 4: Token-Passing Bus Access
Method and Physical Layer Specifications”.

[9] K. Tindell, A. Burns, and A.J. Wellings, “Calculating
Controller Area Network (CAN) Message Response Times”.
Proceedings of the 1994 IFAC Workshop on Distributed
Computer Control Systems (DCCS), Toledo, Spain, 1994.

Operation Time (µs)

Idle State 11.00

Send_Initial_Token 120.78

Check_Token 5.97

Send_Permission 107.61

Send_Token 99.42

Send_Info 149.70

Recv_Info 134.82

