
Application Scheduling Interface 24/7/02 Page 1

Application-Defined Scheduling
(Draft 1.0, July 20021)

By: Mario Aldea Rivas aldeam@unican.es
Michael González Harbour mgh@unican.es

1. Introduction

The fixed priority scheduling policies defined in the current version of the Real-Time POSIX
standard provide a nice combination of simplicity, predictability, and efficiency, that make them
suitable for most real-time applications. However, it is well known that with dynamic priority
scheduling policies it is possible to achieve higher utilization levels of the system resources than
with fixed priority policies. In addition, there are many systems for which their dynamic nature
make it necessary to have very flexible scheduling mechanisms, such as multimedia systems, in
which different quality of service measures need to be traded against one another.

It could be possible to incorporate into the POSIX standard new dynamic scheduling policies to
be used in addition to the existing policies {B14}. The main problem is that the variety of these
policies is so great that it would be difficult to standardize on just a few. Different applications
needs would require different policies. Instead, an interface for application-defined schedulers
is proposed, that could be used to implement a large variety of scheduling policies.

Introducing application-defined schedulers in POSIX has some challenges that do not appear in
existing interfaces and implementations. One of the most difficult ones, is to keep the new sched-
ulers compatible with the existing scheduling policies, while allowing implementations in which
the application schedulers are not trusted and, consequently, are not permitted to execute inside
the kernel address space. Other one is to use as much of the existing scheduling interface as pos-
sible, adding the fewest possible new interfaces.

A prototype of the proposed interface is currently implemented in the operating system MaRTE
OS (Minimal Real-Time Operating System for Embedded Applications) {B4}, which is a real-
time kernel that follows the Minimal Real-Time POSIX.13 subset {B6}, providing both the C and
Ada language POSIX interfaces.

This document defines the proposed interface as a free standing extension of the POSIX stan-
dard and its real-time options. It also provides some examples of usage of the API, and perfor-
mance estimations obtained from the prototype implementation.

2. Related Work and Motivation

The idea of application-defined scheduling has been used in many systems. A solution is pro-
posed in RED-Linux {B8}, in which a two-level scheduler is used, where the upper level is imple-
mented as a user process that maps several quality of service parameters into a low-level
attributes object to be handled by the lower level scheduler. The parameters defined are the
thread priorities, start and finish times, and execution time budget. With that mechanism some
scheduling algorithms can be implemented but there may be others that cannot be implemented
if they are based on parameters different from those included in the aforementioned attributes

1. Funded in part by the FIRST project (EU project IST2001-34140)

Page 2 24/7/02 Application Scheduling Interface

object. In addition, this solution does not address the implementation of protocols for shared re-
sources that could avoid priority inversion or similar effects.

A different approach is followed in the CPU Inheritance Scheduling {B9}, in which the kernel
only implements thread blocking, unblocking and CPU donation, and the application defined
schedulers are threads which donate the CPU to other threads. In this approach the only method
used to avoid priority inversion is the priority inheritance. Although other synchronization pol-
icies could be implemented, the lack of an interface to trigger scheduling decisions by the use of
mutexes makes it difficult or impossible to implement general synchronization protocols, which
may be a limitation for special application-defined policies. In addition although this approach
supports multiprocessor schedulers, it is not possible to have one single-threaded scheduler to
schedule threads in other processors. Some multiprocessor architectures, for example using one
general-purpose processor running the scheduler and an array of digital signal processors run-
ning the scheduled threads, may require that capability.

Another common solution is to implement the application scheduling algorithms as modules to
be included or linked with the kernel (S.Ha.R.K {B10}, RT-Linux {B12}, Vassal {B13}). With this
mechanism the functions exported by the modules are invoked from the kernel at every sched-
uling point. This is a very efficient and general method but as a drawback, the application sched-
uling algorithms can neither be isolated from each other nor from the kernel itself, so, a bug in
one of them could affect the whole system. In addition, it would be very difficult to standardize
such an approach because the internal architecture of the kernel varies a lot from one implemen-
tation to another; it is a problem similar to what is found when trying to standardize device driv-
ers.

In the approach proposed in this document the application scheduler is invoked at every sched-
uling point like with the kernel modules, so the scheduler can have complete control over its
scheduled threads. But in addition, the application scheduling algorithm is executed by a user
thread. Although less efficient, this approach implies two important advantages:

A. The system reliability can be improved by protecting the system from the actions of
an erroneous application scheduler. For efficiency, the interface allows execution of
the application-defined scheduler in an execution environment different than that of
a regular application thread, for example inside the kernel. But alternatively, the
interface allows the implementation to execute the scheduler in the environment of
the application, and therefore to isolate it from the kernel. In this way, high priority
threads that are critical cannot be affected by a faulty scheduler executing at a lower
priority level. The choice of kernel space or application space is left to the
implementation.

B. The application scheduling code can use standard interfaces like those defined in the
POSIX standard. In some systems part of these interfaces might not be accessible for
invocation from inside the kernel.

The interface has been designed so that several application-defined schedulers can be defined,
and so that they have a behavior compatible with other existing scheduling policies in POSIX,
both on single processor and multiprocessor platforms. In addition, the interface takes into ac-
count the implementation of application-defined synchronization protocols.

The dynamic scheduling mechanism proposed for Real-Time CORBA 2.0 {B11} represents an ob-
ject-oriented interface to application-defined schedulers, but it does not attempt to define how
that interface communicates with the operating system. The interface proposed here is the OS
low-level interface, and thus an RT CORBA implementation could use it to support the proposed
dynamic scheduling interface.

In summary, the motivation for this proposal is to provide developers of applications running on
top of standard operating systems (POSIX) with a flexible scheduling mechanism, handling both

Application Scheduling Interface 24/7/02 Page 3

thread scheduling and synchronization, that enables them to schedule dynamic applications
that would not meet their requirements using the more rigid fixed-priority scheduling provided
in those operating systems. This mechanism allows isolation of the kernel from misbehaved ap-
plication schedulers. In addition, the API is available both for applications developed in C or
Ada.

3. Requirements

The following requirements are stated for the application-defined scheduling interface in
POSIX:

• Requirement: The new scheduling policies shall have a behavior compatible with other
existing scheduling policies in POSIX.

Rationale: It is important to keep backwards compatibility in the standard.

• Requirement: It shall be possible to isolate critical parts of the application from failures in
the application-defined schedulers.

Rationale: The application-defined schedulers may not be as trusted as the predefined
POSIX scheduling policies. It is important that there is a way to schedule critical tasks that
do not depend on the behavior, good or bad, of the application-defined schedulers and
associated threads.

• Requirement: Any thread shall be schedulable using an application-defined scheduler,
contending with other threads of the same process. There is no such requirement for
processes.

Rationale: Interprocess application-defined schedulers seem extremely complex, and do not
seem justified by application requirements. Usually processes are used to establish
protection boundaries among different parts of an application, and in that context it seems
that they should only be allowed to use trusted predefined scheduling policies.

• Requirement: When a thread requests attachment to an application scheduler it shall be
possible to reject or accept such attachment

Rationale: There is a family of scheduling algorithms that use the concept of an “acceptance
test”, which is used to accept tasks if the system can guarantee that their timing
requirements will be satisfied, or to reject them if this guarantee cannot be made.

• Requirement: It should be possible to define several application-defined schedulers that
coexist in the same process.

Rationale: Several scheduling algorithms may be required for different parts of an
application, and this is easier to implement if several application-defined schedulers are
possible.

• Requirement: The ability to nest application-defined schedulers so that one scheduler runs
when another one schedules it, should be unspecified.

Rationale: It seems that requiring multilevel application-defined schedulers may be more
complex than it is worth. Therefore support for this feature is not required.

• Requirement: It should be possible to execute the application-defined scheduler in an
execution environment different than that of regular application threads, for example inside
the kernel. But the interface should also allow the implementation to execute the scheduler
in the environment of the application threads.

Page 4 24/7/02 Application Scheduling Interface

Rationale: In some systems only trusted software is allowed inside the kernel, and thus the
application-defined scheduler should run outside the kernel, even if this implies less
efficiency. In other systems, for efficiency purposes, it should be possible for the
implementation to execute the scheduler inside the kernel. This should be an
implementation choice.

• Requirement: The application-defined scheduler should have the ability to determine and
bound the execution time of the different threads scheduled under it run.

Rationale: Some scheduling algorithms depend on the measurement of CPU time, for
example to accommodate execution of certain activities during the available slack time.

• Requirement: An application-defined scheduler should have the ability to choose the clock
used for its timed events.

Rationale: Because different schedulers may have different requirements relative to the
clock that they are using. For example, a scheduler may require a high resolution clock, a
synchronized clock, or a monotonic clock.

• Requirement: There should be a mechanism to allow application schedulers to accept or
reject a task that wishes to register for execution

Rationale: There are some scheduling algorithms that use the concept of an admittance test:
a task, when created is either admitted or rejected for execution depending on the current
load of the system, and depending on whether or not the scheduler will be able to guarantee
that all the timing requirements will be met.

• Requirement: If an application-scheduled thread needs to synchronize with other system-
scheduled threads there needs to be a portable mechanism to bound priority inversion.

Rationale: Unbounded priority inversion cause high priority threads to experience very long
delays waiting for lower priority threads, usually as a result of synchronization. By letting
the scheduler know whether a mutex is used or not, we make it possible to implement a
protocol that bounds priority inversion.

• Requirement: The application-defined scheduler should have the ability to know when a
thread running under it is using an application-scheduled mutex. In addition, it should
know when such a thread inherits a priority (or uninherits it) because it is using regular
mutexes.

Rationale: Most priority inversion avoidance algorithms require knowledge of the lock and
unlock operations on mutexes.

• Requirement: It should be possible for an application-scheduled thread to pass information
to its scheduler.

Rationale: Some scheduling algorithms may require application-specific information that
has to be supplied by the scheduled threads at runtime, in addition to the normal scheduling
parameters.

• Requirement: It should be possible to filter the specific scheduling events that the system
notifies to the scheduler.

Rationale: For efficiency purposes, if a scheduler is not going to use some of the scheduling
events that can be sent by the system, it should filter them out, i.e., discard them.

• Requirement: It should be possible to attach application-specific data to a mutex.

Rationale: Many scheduling algorithms require knowledge about mutex ownership to bound
priority inversion. For this purpose, it might be necessary to attach application information

Application Scheduling Interface 24/7/02 Page 5

to a mutex, in a similar way as it is done for threads with the thread-specific data interface.
In this case, and for simplicity purposes, it does not seem necessary to use “keys” or different
fields of data, because an application-scheduled mutex can only be used by one scheduler at
a time.

• Requirement: It should be possible to achieve multiprocessor application scheduling.
Efficient multiprocessor scheduling will require knowledge of the specific architecture, and
in particular of the number or processors capable of executing application-scheduled threads
simultaneously.

Rationale: Addressing multiprocessors is a general requirement in POSIX. It is very difficult
to build efficient scheduling algorithms for an unknown architecture. Architecture
dependent information like the number of processors is required.

• Requirement: Each scheduler should be capable of activating multiple of its scheduled
threads at the same time, and/or to block previously activated tasks.

Rationale: There are architectures in which a single scheduler, perhaps executing in a
special-purpose processor, schedules threads to be executed concurrently in multiple
processes.

• Requirement: It should be possible to have a mechanism for exchanging information among
scheduler threads, their scheduled threads, other scheduler threads, and/or regular threads.

Rationale: For some applications, it is necessary that the schedulers be able to receive
information to their scheduled threads, and also to send information back to them.

4. Model for Application-Defined Scheduling

In the proposed approach for application-defined scheduling, shown in Figure 1, each applica-
tion scheduler is a special kind of thread, that is responsible of scheduling a set of threads that
have been attached to it. This leads to two classes of threads in this context:

• Application scheduler threads: special threads used to run application schedulers.
• Regular threads: regular application threads

The application schedulers can run in the context of the kernel or in the context of the applica-
tion. This allows implementations in which application threads are not trusted, and therefore
their schedulers run in the context of the application, as well as implementations for trusted ap-
plication schedulers, which can run more efficiently inside the kernel. Because of this duality,
the scheduler threads are modeled as if they run in a separate context, which is called the sched-
uler space. The main implication of this separate space is that for portability purposes the ap-
plication schedulers cannot directly share information with the kernel, nor with regular threads.
Application schedulers belonging to the same process can share data among them. This is useful
for building a multithreaded application scheduler, for a multiprocessor platform.

According to the way a thread is scheduled, we can categorize the threads as:

• System-scheduled threads: these threads are scheduled directly by the operating system,
without intervention of a scheduler thread.

• Application-scheduled threads: these threads are also scheduled by the operating system,
but before they can be scheduled they need to be activated by their application-defined
scheduler.

It is unspecified whether application scheduler threads can themselves be application sched-
uled. They can always be system scheduled.

Page 6 24/7/02 Application Scheduling Interface

There are two ways in which a thread can be scheduled by an application scheduler:

• At thread creation. In this case, thread creation attributes specify the scheduler to be used,
the regular and application scheduling parameters, and the scheduling policy (as application
scheduled). The pthread_create() function creates the thread in a suspended state and waits
until the scheduler either accept or rejects the new thread. If rejected, pthread_create fails
and the thread is destroyed. To avoid this creation and destruction process, the parent
thread could explicitly invoke the scheduler to reserve resources for the new thread, before
creating it.

• By dynamically changing the scheduling policy to “application scheduled”. Before the change
the thread must be under a policy that is not application-scheduled, and must set the sched-
uler thread and the application scheduling parameters attributes to the desired values.
Then, the pthread_setschedparam() function is invoked to dynamically change the schedul-
ing policy into application-scheduled. If the thread is rejected, the function fails.

Direct change of the application scheduler is not allowed because if the new scheduler rejects the
thread after the old scheduler has detached it, the thread would be left in an uncertain state,
with no scheduler. Therefore, to change the scheduler a thread would first have to switch to an-
other policy, SCHED_FIFO for example, and from there request attachment to the new sched-
uler. If rejected, the thread would continue with the SCHED_FIFO policy in that case.

Because the use of mutexes may cause priority inversions or similar delay effects, it is necessary
that the scheduler thread knows about their use, to establish its own protocols adapted to the
particular thread scheduling policy. As is shown in Figure 2, two kinds of mutexes will be con-
sidered:

• System-scheduled mutexes. Those created with the current POSIX protocols: no priority
inheritance (PTHREAD_PRIO_NONE), immediate priority ceiling
(PTHREAD_PRIO_PROTECT), or basic priority inheritance (PTHREAD_PRIO_INHERIT). They

System
Scheduler

Application
Scheduler Thread

Thread

Planifica-

Application
Scheduler Thread

User Address Space

Scheduler Address
Space

Planifica-Application-
Scheduled

Thread

Planifica-Application-
Scheduled

Thread

ThreadRegular
Thread

Figure 1. Model for application-defined scheduling

Application Scheduling Interface 24/7/02 Page 7

can be used to access resources shared between application schedulers, or between sets of
application-scheduled threads attached to different schedulers.

• Application-scheduled mutexes: Those created with PTHREAD_APPSCHED_PROTOCOL. The
behavior of the protocol itself is defined by the application scheduler. The kernel notifies the
scheduler about the request to lock one such mutex, the execution of an unlock operation, or
when a thread blocks on one of these mutexes. After the lock request operation the applica-
tion scheduler can chose to grant or not the mutex to the requesting thread. The block event
might not be necessary in some schedulers that implement non-blocking synchronization
protocols.

4.1 Relations with Other Threads

Each thread in the system, whether application- or system-scheduled, has a system priority:

• For system-scheduled threads, the system priority is the priority defined in its scheduling
parameters (sched_priority field of its sched_param structure), possibly modified by the
inheritance of other priorities through the use of mutexes.

• For application-scheduled threads, the system priority is lower than or equal to the system
priority of their scheduler thread. The system priority of an application-scheduled thread
may change because of the inheritance of other system priorities through the use of mutexes.
In that case, its scheduler also inherits the same system priority (but this priority is not
inherited by the rest of the threads scheduled by that scheduler). In addition to the system
priority, application-scheduled threads have application scheduling parameters that are
used to schedule that thread contending with the other threads attached to the same appli-
cation scheduler. The system priority always takes precedence over any application schedul-
ing parameters. Therefore, application-scheduled threads and their scheduler take
precedence over threads with lower system priority, and they are always preempted by
threads with higher system priority that become ready. The scheduler always takes prece-
dence over its scheduled threads.

If application-scheduled threads coexist at the same priority level with other system-scheduled
threads, then POSIX scheduling rules apply as if the application-scheduled threads were sched-
uled under the FIFO within priorities policy (SCHED_FIFO); so a thread runs until completion,

Figure 2. . Model for Application-Defined Synchronization

Applica-
tion

Mutex

System
Mutex

Applica-
tion

Mutex

System
Mutex System

Mutex

Application
Scheduler

Planifi-Planifi-Application-
Scheduled

Thread

Application
Scheduler

ThreadThreadRegular
Thread

Planifi-Planifi-Application-
Scheduled

Thread

Page 8 24/7/02 Application Scheduling Interface

until blocked, or until preempted, whatever happens earlier. A thread running under the round-
robin within priorities policy (SCHED_RR) runs until completion, until blocked, until preempted,
or until its round robin quantum has been consumed, whatever happens earlier. Of course, in
that case the interactions between the different policies may be difficult to analyze, and thus the
normal use will be to have the scheduler thread and its scheduled threads running at an exclu-
sive range of system priorities.

In the presence of priority inheritance, the scheduler inherits the same priorities as its sched-
uled tasks, to prevent priority inversions from occurring. This means that high priority tasks
that share mutexes with lower system priority application threads must take into account the
scheduler overhead when accounting for their blocking times.

4.2 Relations Between the Scheduler and its Attached Threads

When an application-defined thread is attached to its application scheduler, the latter has to
either accept it or reject it, based upon the current state and the scheduling attributes of the can-
didate thread. Rejection of a thread causes the thread creation function to return an error.

Each application-defined scheduler may activate many application-scheduled threads to run
concurrently. The scheduler may also block previously activated threads. Among themselves,
concurrently scheduled threads are activated like SCHED_FIFO threads. As mentioned previous-
ly, the scheduler always takes precedence over its scheduled threads.

For an application-scheduled thread to become ready it is necessary that its scheduler activates
it. When the application thread executes one of the following actions or experiences one of the
following situations, a scheduling event is generated for the scheduler, unless the scheduling
event to be generated is being filtered out (discarded).

• when a thread requests attachment to the scheduler
• when a thread terminates or requests de-attachment from the scheduler
• when a thread blocks (except at an application-scheduled mutex)
• when a thread is unblocked by the system and would become ready
• when a thread changes its scheduling parameters
• when a thread invokes the pthread_yield() operation
• when a thread explicitly invokes the scheduler
• when a thread inherits or uninherits a priority, due to the use of a system mutex
• when a thread does any operation on a application-scheduled mutex.

The application scheduler is a special thread whose code is usually a loop where it waits for a
scheduling event to be notified to it by the system, and then determines the next application
threads to be activated. The scheduling events are stored in a FIFO queue until processed by the
scheduler. For most scheduling events, unless the event is masked, after the event is generated
the associated thread is suspended, to allow the scheduler to make a decision; for the thread to
become active again it has to be explicitly activated by the scheduler, via the “execute actions”
operation. For other events, the thread continues in the same state as before. The specific events
that may be notified, and the state of the associated thread after the event are shown in Table 1.

Table 1. Application scheduling events and the state of the associated thread

Application Scheduling Events
State of associated thread after the

event

POSIX_APPSCHED_NEW Suspended

POSIX_APPSCHED_TERMINATE No change

Application Scheduling Interface 24/7/02 Page 9

The description of the different events appears next:

• POSIX_APPSCHED_NEW. A thread has requested attachment to this scheduler; this can be a
newly created thread (via pthread_create()), or an existing thread that was not running
under this scheduler (via pthread_setschedparam()).

• POSIX_APPSCHED_TERMINATE. A thread attached to this scheduler has been terminated
(via an explicit or implicit pthread_exit(), or by cancellation via pthread_cancel()), or it has
changed its scheduling parameters and should no longer run under this scheduler (via
pthread_setschedparam()). The thread is not suspended, because it is no longer going to run
under the present scheduler.

• POSIX_APPSCHED_READY. A thread attached to this scheduler that was blocked has become
unblocked by the system.

• POSIX_APPSCHED_BLOCK. A thread attached to this scheduler has blocked (except at an
application-scheduled mutex). The thread is not suspended because it is already blocked by
the system. Once it is unblocked, a POSIX_APPSCHED_READY event will be generated.

• POSIX_APPSCHED_YIELD. A thread attached to this scheduler has invoked the sched_yield()
operation.

• POSIX_APPSCHED_SIGNAL. A blocked signal belonging to the set of signals for which the
scheduler is waiting has been accepted by the scheduler thread.

• POSIX_APPSCHED_CHANGE_SCHED_PARAM. The scheduling parameters of a thread
attached to this scheduler have been changed, but the thread continues to run under this
scheduler. The change includes either the regular scheduling parameters (schedpolicy
and schedparam attributes, via pthread_setschedparam()) or the application-defined sched-
uling parameters. (appsched_param, via pthread_setappschedparam()). Because this opera-

POSIX_APPSCHED_READY Suspended

POSIX_APPSCHED_BLOCK No Change

POSIX_APPSCHED_YIELD Suspended

POSIX_APPSCHED_SIGNAL Not applicable (no associated thread)

POSIX_APPSCHED_CHANGE_SCHED_PARAM No change

POSIX_APPSCHED_EXPLICIT_CALL Suspended

POSIX_APPSCHED_EXPLICIT_CALL_WITH_DATA Suspended

POSIX_APPSCHED_TIMEOUT Not applicable (no associated thread)

POSIX_APPSCHED_PRIORITY_INHERIT Suspended

POSIX_APPSCHED_PRIORITY_UNINHERIT Suspended

POSIX_APPSCHED_INIT_MUTEX Suspended

POSIX_APPSCHED_DESTROY_MUTEX Suspended

POSIX_APPSCHED_LOCK_MUTEX Suspended

POSIX_APPSCHED_TRY_LOCK_MUTEX Suspended

POSIX_APPSCHED_UNLOCK_MUTEX Suspended

POSIX_APPSCHED_BLOCK_AT_MUTEX Suspended

POSIX_APPSCHED_CHANGE_MUTEX_SCHED_PARAM Suspended

Table 1. Application scheduling events and the state of the associated thread (Continued)

Page 10 24/7/02 Application Scheduling Interface

tion may be invoked asynchronously by some thread different than the one changing its
parameters, there is no change to the activated/suspended state of the involved threads.

• POSIX_APPSCHED_EXPLICIT_CALL. A thread attached to this scheduler has explicitly
invoked the scheduler via posix_appsched_invoke_scheduler().

• POSIX_APPSCHED_EXPLICIT_CALL_WITH_DATA. A thread attached to this scheduler has
explicitly invoked the scheduler, with a message containing scheduling information, and pos-
sibly requesting a reply message, via posix_appsched_invoke_withdata().

• POSIX_APPSCHED_TIMEOUT. A timeout requested by the scheduler has expired.
• POSIX_APPSCHED_PRIORITY_INHERIT. A thread attached to this scheduler has inherited a

new system priority due to the use of system mutexes.
• POSIX_APPSCHED_PRIORITY_UNINHERIT. A thread attached to this scheduler has finished

the inheritance of a system priority that was inherited due to the use of system mutexes.
• POSIX_APPSCHED_INIT_MUTEX. A thread attached to this scheduler has requested initial-

ization of an application-scheduled mutex.
• POSIX_APPSCHED_DESTROY_MUTEX. A thread attached to this scheduler has destroyed an

application-scheduled mutex.
• POSIX_APPSCHED_LOCK_MUTEX. A thread attached to this scheduler has invoked the

“lock” operation on an available application- scheduled mutex.
• POSIX_APPSCHED_TRYLOCK_MUTEX. A thread attached to this scheduler has invoked the

“try lock” operation on an available application- scheduled mutex.
• POSIX_APPSCHED_UNLOCK_MUTEX. A thread attached to this scheduler has released the

lock of an application-scheduled mutex.
• POSIX_APPSCHED_BLOCK_AT_MUTEX. A thread attached to this scheduler has blocked at

an unavailable application-scheduled mutex.
• POSIX_APPSCHED_CHANGE_MUTEX_SCHED_PARAM. A thread attached to this scheduler

and currently holding the lock on an application-scheduled mutex has changed the schedul-
ing parameters of that mutex.

The application scheduler is a special thread whose code is usually a loop where it waits for a
scheduling event to be notified to it by the system, and then determines the next application
thread or threads to be activated.

Although the scheduler can activate many threads at once, it is a single thread and therefore its
actions are all sequential. For multiprocessor systems this may seem to be a limitation, but for
these systems several schedulers could be running simultaneously on different processors, coop-
erating with each other by synchronizing through regular mutexes and condition variables. For
single processor systems the sequential nature of the scheduler should be no problem.

4.3 Sharing Information Between the Schedulers and Their Scheduled
Threads

There is an explicit “invoke scheduler” family of operations that can be used by an application-
scheduled thread to directly invoke its scheduler, pass information to it, and obtain information
back. Generally, the information to be shared by the scheduler and its associated threads is
small, and therefore this mechanism does not introduce much overhead.

Because the scheduler may run in a context different than its scheduled threads, possibly with
a different address space, there is no mechanism to directly share memory among them. The
mechanism used in POSIX to share memory between processes that are placed in different ad-
dress spaces, shared memory objects is not useful for this case because it is designed for different
processes, and in this case the scheduler and its threads are in the same process.

Application Scheduling Interface 24/7/02 Page 11

5. Interface for Application-Defined Scheduling

All the interfaces defined in this standard are mandatory if the standard is supported. The im-
plementation shall conform to at least one of the POSIX.13 realtime profiles.

5.1 Data Definitions

5.1.1 Errors

The following symbolic name representing an error number shall be defined in <errno.h>:

[EREJECT] The thread requesting attachment to an application-defined scheduler has
been rejected by that scheduler.

[EPOLICY] The scheduling policy or the scheduler state attribute of the calling thread
is not valid for this operation.

[EMASKED] The operation cannot be executed because the associated scheduling event
is currently masked by the application scheduler.

5.1.2 Minimum and Configurable Values

The constants specified in the Table 1-1 shall be defined in <limits.h> with the values shown.
These are symbolic names for the most restrictive value for certain features in this Standard. A
conforming implementation shall provide values at least this large. A portable application shall
not require a larger value for correct operation:

The constants defined in Table 1-2 are related to the constants that appear in Table 1-1. If the
actual value is determinate, it shall be represented by the constant, defined in <limits.h>. If
the actual bound is indeterminate, it shall be provided by the sysconf() function using the corre-
sponding name value, defined in <unistd.h> and specified in Table 1-3.

Table 1-1: Minimum Values

Constant Description Value

_POSIX_APPSCHEDPARAM_MAX The minimum size in bytes for the bound on
the size of the application scheduling
parameters (see 5.1.3)

32

_POSIX_APPSCHEDINFO_MAX The minimum size in bytes for the bound on
the size of the data exchanged between an
application-scheduled thread and its
scheduler (see 5.10)

32

_POSIX_APPMUTEXPARAM_MAX The minimum size in bytes for the bound on
the size of the mutex scheduling parameters
(see 8.1.2)

16

Page 12 24/7/02 Application Scheduling Interface

Table 1-2: Run-time Invariant Values (possibly Indeterminate)

Constant Description Minimum Value

POSIX_APPSCHEDPARAM_MAX The bound in bytes
for the size of the
application
scheduling
parameters (see 5.1.3)

_POSIX_APPSCHEDPARAM_MAX

POSIX_APPSCHEDINFO_MAX The bound in bytes
for the size of the data
exchanged between
an application-
scheduled thread and
its scheduler (see
5.10)

_POSIX_APPSCHEDINFO_MAX

POSIX_APPMUTEXPARAM_MAX The bound in bytes
for the size of the
mutex scheduling
parameters (see 8.1.2)

_POSIX_APPMUTEXPARAM_MAX

Table 1-3: Configurable System Variables

Variable Description name Value

POSIX_APPSCHEDPARAM_MAX The bound in
bytes for the size
of the application
scheduling
parameters (see
5.1.3)

_SC_POSIX_APPSCHEDPARAM_MAX

POSIX_APPSCHEDINFO_MAX The bound in
bytes for the size
of the data
exchanged
between an
application-
scheduled thread
and its scheduler
(see 5.10)

_SC_POSIX_APPSCHEDINFO_MAX

POSIX_APPMUTEXPARAM_MAX The bound in
bytes for the size
of the mutex
scheduling
parameters (see
8.1.2)

_SC_POSIX_APPMUTEXPARAM_MAX

Application Scheduling Interface 24/7/02 Page 13

5.1.3 Scheduling Policy and Attributes

The following scheduling policy shall be defined in <sched.h>. This policy shall not be used to
schedule processes, i.e., it shall not be used in a call to sched_setscheduler():

The following new thread attributes are defined for specifying application scheduling parame-
ters:

For a thread to be created as a application-scheduled thread under a specified scheduler, the
scheduler must have been created beforehand. Then, at the thread creation time, the thread cre-
ation policy is set to the value SCHED_APP, and the scheduling parameters are set with the ap-
propriate values in the appscheduler and appsched_param attributes. These attributes can
also be set or queried dynamically, after the thread has been created.

If the scheduling policy of the thread is not SCHED_APP, these attributes have no effect.

The default value for the appscheduler attribute is unspecified. If at the time of the thread
creation the scheduling policy is SCHED_APP and the appscheduler attribute does not refer to
a valid application scheduler thread, the corresponding pthread_create() operation shall fail
with an error of [EINVAL].

The appsched_param attribute is a variable-size buffer containing application-defined sched-
uling parameters. The maximum size of this attribute shall be represented by the variable
POSIX_APPSCHEDPARAM_MAX (see 5.1.2). The default value for the appsched_param at-
tribute shall be a buffer of zero bytes.

5.1.4 Scheduler Thread State Attribute

A new attribute, appscheduler_state, is defined to represent whether a thread is an applica-
tion-scheduler thread or a regular thread. This is a thread-creation attribute that can be queried
dynamically, but cannot be modified dynamically.

A value of PTHREAD_APPSCHEDULER for the appscheduler_state attribute shall cause
threads created with that attribute to be created as application scheduler threads. Application
scheduler threads shall not share variables or memory with other regular application threads,
and shall not synchronize with such threads using mutexes or condition variables; otherwise the
results are undefined. Application scheduler threads may share variables and cooperate via mu-
texes and condition variables with other application scheduler threads in the same process.

A value of PTHREAD_REGULAR for the appscheduler_state attribute shall cause the thread
to be created as a normal application thread as specified elsewhere in this standard.

Symbol Description

SCHED_APP Application-defined scheduling policy

Attribute type Attribute Name Description

pthread_t appscheduler Scheduler thread to which the application-
defined scheduler is attached

n/a appsched_param Application-defined scheduling parameters

Page 14 24/7/02 Application Scheduling Interface

These symbols shall be defined in <pthread.h>. The default value shall be
PTHREAD_REGULAR.

5.1.5 Scheduling Events

The following datatypes shall be defined in <sched.h>:

union posix_appsched_eventinfo {
int sched_priority;
siginfo_t siginfo;
pthread_mutex_t *mutex;
void *info;
int user_event_code;

};

struct posix_appsched_event {
int event_code;
pthread_t thread;
union posix_appsched_eventinfo event_info;
size_t info_size;

};

The structure posix_appsched_event represents a scheduling event that the system notifies to
the application-defined scheduler. It contains the code of the specific event that has occurred (see
Table 2) in the event_code member; the thread identifier of the thread that caused the event in
the thread member; the information associated with that event in the event_info member; and
the size of the information, if necessary, in the info_size member.

The union posix_appsched_eventinfo represents the different kinds of information that may be
attached to a scheduling event. Table 2 shows the information associated with each scheduling
event. All the symbols shall be defined in <sched.h>.

Table 2. Application scheduling events and their associated information

Application Scheduling Events (event_code) Additional Information (event_info)

POSIX_APPSCHED_NEW NULL pointer

POSIX_APPSCHED_TERMINATE NULL pointer

POSIX_APPSCHED_READY NULL pointer

POSIX_APPSCHED_BLOCK NULL pointer

POSIX_APPSCHED_YIELD NULL pointer

POSIX_APPSCHED_SIGNAL siginfo_t value delivered with the
signal

POSIX_APPSCHED_CHANGE_SCHED_PARAM NULL pointer

POSIX_APPSCHED_EXPLICIT_CALL User event code

POSIX_APPSCHED_EXPLICIT_CALL_WITH_DATA Pointer to the message set by the
threada

POSIX_APPSCHED_TIMEOUT NULL pointer

Application Scheduling Interface 24/7/02 Page 15

5.1.6 Scheduling Events Sets

The posix_appsched_eventset_t type shall be defined in <sched.h>. Values of this type repre-
sent sets of scheduling event codes. Several functions used to manipulate objects of this type are
defined in 5.8. No comparison or assignment operators are defined for the type
posix_appsched_eventset_t.

5.1.7 Scheduling Actions

The posix_appsched_actions_t datatype shall be defined in <sched.h> to represent a list of
scheduling actions that the scheduler will later request to be executed by the system. The pos-
sible actions are of the following kinds:

• accept or reject a thread that has requested attachment to this scheduler
• activate or suspend an application-scheduled thread
• accept or reject initialization of an application-scheduled mutex
• grant the lock of an application-scheduled mutex

No comparison or assignment operators are defined for the type posix_appsched_actions_t.

5.1.8 Rationale for Data Definitions

The new thread attributes for application scheduling, appscheduler and appsched_param,
were initially proposed as additional fields of the sched_param structure that is commonly used
to store the scheduling parameters of a thread. However, this solution has the disadvantage that
code requiring use of that structure needs recompilation. In particular, because the widely used
C library (libc) uses that structure it was considered that, to ease backwards compatibility,
new thread attributes should be used instead.

The minimum size for the scheduling parameters attribute appsched_param is set to 32 because
there are many scheduling algorithms that require specifying up to four time parameters (for
example, period, execution time, soft deadline, and hard deadline). Each of these parameters re-
quires eight bytes if stored in a struct timespec datatype.

POSIX_APPSCHED_PRIORITY_INHERIT Inherited system priority

POSIX_APPSCHED_PRIORITY_UNINHERIT Uninherited system priority

POSIX_APPSCHED_INIT_MUTEX Pointer to the app. scheduled mutex

POSIX_APPSCHED_DESTROY_MUTEX Pointer to the app. scheduled mutex

POSIX_APPSCHED_LOCK_MUTEX Pointer to the app. scheduled mutex

POSIX_APPSCHED_TRY_LOCK_MUTEX Pointer to the app. scheduled mutex

POSIX_APPSCHED_UNLOCK_MUTEX Pointer to the app. scheduled mutex

POSIX_APPSCHED_BLOCK_AT_MUTEX Pointer to the app. scheduled mutex

POSIX_APPSCHED_CHANGE_MUTEX_SCHED_PARAM Pointer to the app. scheduled mutex

a. In this case, info_size shall be the size of the information; in other cases, info_size shall be zero

Table 2. Application scheduling events and their associated information (Continued)

Page 16 24/7/02 Application Scheduling Interface

An event for notifying preemption of a scheduled thread is not included. Although such event
might seem to be useful to measure execution times from an application scheduler, it would be
difficult for the scheduler to know when a scheduled thread actually started executing. If mea-
suring execution time is required, it is much simpler to use a POSIX execution time clock for that
purpose.

5.2 Interface for the Creation of the Scheduler

5.2.1 Synopsis

#include <pthread.h>

int pthread_attr_setappschedulerstate
(pthread_attr_t *attr,
 int appschedstate);

int pthread_attr_getappschedulerstate
(const pthread_attr_t *attr,
 int *appschedstate);

5.2.2 Description

The pthread_attr_setschedulerstate() and pthread_attr_getschedulerstate() functions are used to
set and get the appscheduler_state attribute in the object pointed to by attr. The
pthread_attr_setschedulerstate() function shall set this attribute to the value specified by app-
schedstate, which shall be either PTHREAD_REGULAR or PTHREAD_APPSCHEDULER. These
symbols are described in 5.1.4.

An application-defined scheduler itself shall be scheduled by the system as a thread under the
SCHED_FIFO policy, with the system priority determined by the sched_priority member of its
schedparam attribute.

5.2.3 Returns

Upon successful completion, pthread_attr_setschedulerstate() and
pthread_attr_getschedulerstate() shall return a value of 0. Otherwise an error number shall be
returned to indicate the error.

The pthread_attr_getschedulerstate() function stores the appscheduler_state attribute in the
variable pointed to by appschedstate if successful.

5.2.4 Errors

If any of the following conditions occur, the pthread_attr_setschedulerstate() function shall re-
turn the corresponding error number:

[EINVAL] The value of appschedstate was not valid.

Application Scheduling Interface 24/7/02 Page 17

5.2.5 Cross-References

pthread_create(), pthread_getappscheduler().

5.3 Dynamically Getting the Appscheduler Attribute

5.3.1 Synopsis

#include <pthread.h>

int pthread_getappschedulerstate (pthread_t thread, int *appschedstate);

5.3.2 Description

This function allows the appscheduler_state attribute to be retrieved dynamically, after the
thread has been created. The value of the attribute shall be returned in the variable pointed to
by appschedstate.

5.3.3 Returns

The pthread_getappschedulerstate() function stores the appscheduler_state attribute of the
thread specified by thread in the variable pointed to by appschedstate and returns zero, if suc-
cessful.

5.3.4 Errors

If any of the following conditions are detected, the pthread_getappschedulerstate() function shall
return the corresponding error number:

[ESRCH] The value specified by thread does not refer to an existing thread.

5.3.5 Cross-References

pthread_attr_setschedulerstate().

5.4 Interfaces for Creating Application-Scheduled Threads

5.4.1 Synopsis

#include <pthread.h>

int pthread_attr_setappscheduler
(pthread_attr_t *attr,
 pthread_t scheduler);

int pthread_attr_getappscheduler
(const pthread_attr_t *attr,
 pthread_t *scheduler);

Page 18 24/7/02 Application Scheduling Interface

int pthread_attr_setappschedparam
(pthread_attr_t *attr,
 const void *param,
 size_t paramsize);

int pthread_attr_getappschedparam
(const pthread_attr_t *attr,
 void *param,
 size_t *paramsize);

5.4.2 Description

The pthread_attr_setappscheduler() and pthread_attr_getappscheduler() functions are used to
set and get the appscheduler attribute in the object pointed to by attr. For those threads with
the scheduling policy SCHED_APP, this attribute represents the identifier of its scheduler
thread. The attribute is described in 5.1.3. If successful, the pthread_attr_setappscheduler()
function shall set this attribute to the value specified by scheduler, which shall be a valid appli-
cation scheduler thread.

The pthread_attr_setappschedparam() and pthread_attr_getappschedparam() functions are
used to set and get the appsched_param attribute in the object pointed to by attr. For those
threads with the scheduling policy SCHED_APP, this attribute represents the application-specif-
ic scheduling parameters. The attribute is described in 5.1.3. If successful, the
pthread_attr_setappschedparam() function shall set the size of the appsched_param attribute
to the value specified by paramsize, and shall copy the scheduling parameters occupying param-
size bytes and pointed to by param into that attribute.

The pthread_attr_getappschedparam() function shall copy the contents of the appsched_param
attribute into the memory area pointed to by param. This memory area shall be capable of stor-
ing at least a number of bytes equal to the size of the appsched_param attribute; otherwise, the
results are undefined.

5.4.3 Returns

Upon successful completion, pthread_attr_setappscheduler(),
pthread_attr_setappschedparam(), pthread_attr_getappscheduler(), and
pthread_attr_getappschedparam() shall return a value of 0. Otherwise an error number shall be
returned to indicate the error.

The pthread_attr_getappscheduler() function stores the appscheduler attribute in the variable
pointed to by scheduler if successful.

The pthread_attr_getappschedparam() function stores the size of the appsched_param at-
tribute in the variable pointed to by paramsize, and copies the contents of the appsched_param
attribute into the memory area pointed to by param.

5.4.4 Errors

If any of the following conditions occur, the pthread_attr_setappscheduler() function shall return
the corresponding error number:

[EINVAL] The value of scheduler was not valid.

Application Scheduling Interface 24/7/02 Page 19

If any of the following conditions occur, the pthread_attr_setappschedparam() function shall re-
turn the corresponding error number:

 [EINVAL] The value of paramsize was smaller than zero, or was larger than
POSIX_APPSCHEDPARAM_MAX.

If any of the following conditions are detected, the pthread_attr_setappschedparam() function
shall return the corresponding error number:

[EINVAL] The value of param was invalid.

5.4.5 Cross-References

pthread_create().

5.5 Interfaces for Dynamic Access to Application Scheduling Parameters

5.5.1 Synopsis

#include <pthread.h>

int pthread_setappscheduler
(pthread_t thread,
 pthread_t scheduler);

int pthread_setappschedparam
(pthread_t thread,
 const void *param,
 size_t paramsize);

int pthread_getappscheduler
(pthread_t thread,
 pthread_t *scheduler);

int pthread_getappschedparam
(pthread_t thread,
 void *param,
 size_t *paramsize);

5.5.2 Description

The pthread_setappscheduler() and pthread_getappscheduler() functions are used to dynamical-
ly set and get the appscheduler attribute of the thread identified by thread. For a thread with
the scheduling policy SCHED_APP, this attribute represents the identifier of its scheduler
thread. This attribute is described in 5.1.3.

If successful, the pthread_setappscheduler() function shall set the appscheduler attribute to
the value specified by scheduler. For this function to succeed, the scheduling policy of the calling
thread shall not be SCDHED_APP, because directly changing the scheduler is not permitted.

The pthread_setappschedparam() and pthread_getappschedparam() functions are used to dy-
namically set and get the appsched_param attribute of the thread identified by thread. For a
thread with the scheduling policy SCHED_APP, this attribute represents its application-defined
scheduling parameters. This attribute is described in 5.1.3.

Page 20 24/7/02 Application Scheduling Interface

If successful, the pthread_setappschedparam() function shall set the size of the
appsched_param attribute to the value specified by paramsize, and it shall copy the scheduling
parameters occupying paramsize bytes and pointed to by param into that attribute. In addition,
if the scheduling policy of thread is SCHED_APP, it shall generate a
POSIX_APPSCHED_CHANGE_SCHED_PARAM event for the application scheduler of that thread,
unless that event is masked in that application scheduler.

The memory area represented by param in the call to pthread_getappschedparam() shall be ca-
pable of storing at least a number of bytes equal to the size of the appsched_param attribute;
otherwise, the results are undefined.

5.5.3 Returns

Upon successful completion, pthread_setappscheduler(), pthread_getappscheduler(),
pthread_setappschedparam(), and pthread_getappschedparam() shall return a value of 0. Other-
wise an error number shall be returned to indicate the error.

The pthread_getappscheduler() function stores the appscheduler attribute in the variable
pointed to by appsched, if successful.

The pthread_getappschedparam() function stores the size of the appsched_param attribute in
the variable pointed to by paramsize, and copies the contents of the appsched_param at-
tribute into the memory area pointed to by param, if successful.

5.5.4 Errors

If any of the following conditions occur, the pthread_setappscheduler() function shall return the
corresponding error number:

[EINVAL] The value of scheduler was not valid.

[EPOLICY] The scheduling policy of the calling thread is SCHED_APP

If any of the following conditions occur, the pthread_setappschedparam() function shall return
the corresponding error number:

[EINVAL] The value of paramsize was less than zero, or was larger than
POSIX_APPSCHEDPARAM_MAX.

If any of the following conditions are detected, the pthread_setappschedparam() function shall
return the corresponding error number:

[EINVAL] The value of param was invalid.

If any of the following conditions are detected, the pthread_setappscheduler(),
pthread_getappscheduler(), pthread_setappschedparam(), and pthread_getappschedparam()
functions shall return the corresponding error number:

[ESRCH] The value specified by thread does not refer to an existing thread.

5.5.5 Cross-References

pthread_create(), pthread_attr_setappscheduler, pthread_attr_setappschedparam().

Application Scheduling Interface 24/7/02 Page 21

5.6 Interfaces for the Scheduler Thread: Scheduling Actions

5.6.1 Synopsis

#include <sched.h>

int posix_appsched_actions_init(
posix_appsched_actions_t *sched_actions);

int posix_appsched_actions_destroy(
posix_appsched_actions_t *sched_actions);

int posix_appsched_actions_addaccept(
posix_appsched_actions_t *sched_actions,
pthread_t thread);

int posix_appsched_actions_addreject(
posix_appsched_actions_t *sched_actions,
pthread_t thread);

int posix_appsched_actions_addactivate(
posix_appsched_actions_t *sched_actions,
pthread_t thread);

int posix_appsched_actions_addsuspend(
posix_appsched_actions_t *sched_actions,
pthread_t thread);

int posix_appsched_actions_addacceptmutex(
posix_appsched_actions_t *sched_actions,
const pthread_mutex_t *mutex);

int posix_appsched_actions_addrejectmutex(
posix_appsched_actions_t *sched_actions,
const pthread_mutex_t *mutex);

int posix_appsched_actions_addlockmutex(
posix_appsched_actions_t *sched_actions,
pthread_t thread,
const pthread_mutex_t *mutex);

5.6.2 Description

A scheduling actions object is of type posix_appsched_actions_t (defined in <sched.h>) and is
used to specify a series of actions to be performed by the posix_appsched_execute_actions() func-
tion. The order of the actions added to the object shall be preserved.

The posix_appsched_actions_init() function initializes the object referenced by sched_actions to
contain no scheduling actions to perform. After successful initialization, the number of actions
that may be successfully added to the actions object shall be at least equal to
_POSIX_THREAD_THREADS_MAX.

The effect of initializing an already initialized actions object is undefined.

The posix_appsched_actions_destroy() function destroys the object referenced by sched_actions;
the object becomes, in effect, uninitialized. An implementation may cause
posix_appsched_actions_destroy() to set the object referenced by sched_actions to an invalid val-

Page 22 24/7/02 Application Scheduling Interface

ue. A destroyed scheduling actions object can be reinitialized using
posix_appsched_actions_init(); the results of otherwise referencing the object after it has been
destroyed are undefined.

The posix_appsched_actions_addaccept() function adds a thread-accept action to the object ref-
erenced by sched_actions, that will serve to notify that the thread identified by thread has been
accepted by the scheduler thread to be scheduled by it. When the
posix_appsched_execute_actions() function is invoked with this scheduling actions object, any
thread waiting for such notification either on a pthread_create() or a pthread_setschedparam()
function shall successfully complete the function. If no thread was waiting for such notification,
the action has no effects.

The posix_appsched_actions_addreject() function adds a thread-reject action to the object refer-
enced by sched_actions, that will serve to notify that the thread identified by thread has not been
accepted by the scheduler thread to be scheduled by it, possibly because the thread contained
invalid application scheduling attributes, or because there are not enough resources for the new
thread. When the posix_appsched_execute_actions() function is invoked with this scheduling ac-
tions object, any thread waiting for such notification either on a pthread_create() or a
pthread_setschedparam() function shall complete the function with an error code of [EREJECT].
If no thread was waiting for such notification, the action has no effects.

The posix_appsched_actions_addactivate() function adds a thread-activate action to the object
referenced by sched_actions, that will cause the thread identified by thread to be activated when
the posix_appsched_execute_actions() function is invoked with this scheduling actions object. If
the thread was already active at the time the thread-activate action is executed, then the thread
shall continue to be active. If the thread was suspended at a posix_mutex_trylock() operation
then this action shall be an indication that the corresponding mutex is not available.

The posix_appsched_actions_addsuspend() function adds a thread-suspend action to the object
referenced by sched_actions, that will cause the thread identified by thread to be suspended
when the posix_appsched_execute_actions() function is invoked with this scheduling actions ob-
ject. If the thread was already suspended at the time the thread-suspend action is executed, then
the thread shall continue to be suspended.

The posix_appsched_actions_addacceptmutex() function adds a mutex-accept action to the object
referenced by sched_actions, that will serve to notify that the mutex identified by mutex has been
accepted by the scheduler thread to be scheduled by it. When the
posix_appsched_execute_actions() function is invoked with this scheduling actions object, any
thread waiting for such notification on a pthread_mutex_init() function shall successfully com-
plete the function. If no thread was waiting for such notification, the action has no effects.

The posix_appsched_actions_addrejectmutex() function adds a mutex-reject action to the object
referenced by sched_actions, that will serve to notify that the mutex identified by mutex has not
been accepted by the scheduler thread to be scheduled by it, possibly because the mutex con-
tained invalid scheduling attributes, or because there are not enough resources for the new mu-
tex. When the posix_appsched_execute_actions() function is invoked with this scheduling actions
object, any thread waiting for such notification on a pthread_mutex_init() function shall com-
plete the call with an error code of [EREJECT]. If no thread was waiting for such notification,
the action has no effects.

The posix_appsched_actions_addlockmutex() function adds a mutex-lock action to the object ref-
erenced by sched_actions, that will cause the lock on the mutex identified by mutex to be granted
to the thread indicated by thread when the posix_appsched_execute_actions() function is invoked
with this scheduling actions object.

Application Scheduling Interface 24/7/02 Page 23

5.6.3 Returns

Upon successful completion, pthread_appsched_actions_init(),
pthread_appsched_actions_destroy(), pthread_appsched_actions_addaccept(),
pthread_appsched_actions_addreject(), pthread_appsched_actions_addactivate(),
pthread_appsched_actions_addsuspend(), posix_appsched_actions_addacceptmutex(),
posix_appsched_actions_addrejectmutex(), and posix_appsched_actions_addlockmutex() shall
return a value of 0. Otherwise an error number shall be returned to indicate the error.

5.6.4 Errors

If any of the following conditions occur, the pthread_appsched_actions_init() function shall re-
turn the corresponding error number:

[ENOMEM] There is insufficient memory to initialize the actions object.

If any of the following conditions occur, the pthread_appsched_actions_addaccept(),
pthread_appsched_actions_addreject(), pthread_appsched_actions_addactivate(),
pthread_appsched_actions_addsuspend(), posix_appsched_actions_addacceptmutex(),
posix_appsched_actions_addrejectmutex(), and posix_appsched_actions_addlockmutex() func-
tions shall return the corresponding error number:

[ENOMEM] There is insufficient memory to add a new action to the actions object.

If any of the following conditions is detected, the pthread_appsched_actions_destroy(),
pthread_appsched_actions_addaccept(), pthread_appsched_actions_addreject(),
pthread_appsched_actions_addactivate(), pthread_appsched_actions_addsuspend(),
posix_appsched_actions_addacceptmutex(), posix_appsched_actions_addrejectmutex(), and
posix_appsched_actions_addlockmutex() functions shall return the corresponding error number:

[EINVAL] The value specified by sched_actions is invalid.

5.6.5 Cross-References

pthread_create(), pthread_setschedparam(), posix_appsched_execute_actions(),
pthread_mutex_init(), pthread_mutex_lock(), pthread_mutex_timedlock(),
pthread_mutex_trylock().

5.7 Interfaces for the Scheduler Thread: Execute Scheduling Actions

5.7.1 Synopsis

#include <signal.h>
#include <sched.h>

int posix_appsched_execute_actions
(const posix_appsched_actions_t *sched_actions,
 const sigset_t *set,
 const struct timespec *timeout,
 struct timespec *current_time,
 struct posix_appsched_event *event);

Page 24 24/7/02 Application Scheduling Interface

5.7.2 Description

The posix_appsched_execute_actions() shall execute the scheduling actions pointed to by
sched_actions (as described in 5.1.7 and 5.6) in the same order as they were added to the actions
object, and then it shall cause the application scheduler thread calling the function to wait for
the next scheduling event notified by the system. If no event is available in the scheduling event
queue of the scheduler thread, then the scheduler thread shall block. If sched_actions is NULL,
then no scheduling actions shall be executed, but the function shall wait for the next scheduling
event notified by the system, as in the case in which scheduling actions were executed.

The threads referenced in the actions object pointed to by sched_actions shall refer to threads
scheduled by the calling application scheduler for the function to succeed. If mutex-lock action
is specified in sched_actions and the associated thread is not waiting in a pthread_mutex_lock()
or pthread_mutex_timedlock() for the specified mutex at the time of the call, the function shall
fail. Detection of one of these error conditions shall be made as the action is performed; thus, if
an error is detected, previous actions will have been executed, and none of the further actions
shall be executed.

If set is not NULL, the posix_appsched_execute_actions() function shall enable an additional
scheduling event which will occur when there is no scheduling event available in its queue and
one of the blocked signals belonging to set is accepted by the calling thread; the event generated
shall have the code POSIX_APPSCHED_SIGNAL, its thread member shall be unspecified, and the
information associated with the signal shall be returned in the siginfo member of the event_info
member of event. If set is NULL, there shall be no acceptance of signals during the call.

If timeout is not NULL, the posix_appsched_execute_actions() function shall enable an additional
scheduling event which will occur when there is no scheduling event available in its queue but
the timeout specified by timeout expires; the event generated shall have the code
POSIX_APPSCHED_TIMEOUT, and its thread member shall be unspecified. The value of timeout
shall be interpreted according to the way in which the timeouts have been configured, as de-
scribed for the scheduler attributes (see 5.9). If timeout is NULL, there shall be no pending tim-
eout for the call.

If current_time is not NULL, the posix_appsched_execute_actions() function shall return in the
variable pointed to by that argument the value of the clock specified by the clockid attribute
of the application scheduler (see 5.9), as measured immediately before the function returns.1

If the thread calling posix_appsched_execute_actions() is not an application scheduler thread,
then the function shall fail.

5.7.3 Returns

If successful, posix_appsched_execute_actions() shall return zero. Otherwise an error number
shall be returned to indicate the error.

5.7.4 Errors

If any of the following conditions occur, the corresponding error number shall be returned by,
posix_appsched_execute_actions():

1. Notice that the value returned may not represent the time at which it is used by the scheduler, since pre-
emptions may occur in between.

Application Scheduling Interface 24/7/02 Page 25

[EINVAL] One or more of the threads specified by the sched_actions scheduling ac-
tions object does not refer to a thread associated with this scheduler at the
time of the posix_appsched_execute_actions() call.

A mutex-lock action was specified in sched_actions and the associated
thread was not waiting for the specified mutex at the time of the call.

[ESRCH] One or more of the threads identifiers specified by the sched_actions sched-
uling actions object did not correspond to a thread that existed at the time
of the posix_appsched_execute_actions() call.

[EPOLICY] The calling thread is not an application scheduler.

If any of the following conditions is detected, the corresponding error number shall be returned
by, posix_appsched_execute_actions():

[EINVAL] The value of one or more of the arguments is invalid.

5.7.5 Cross-References

posix_appsched_actions_init(), pthread_create(), pthread_setschedparam(),
pthread_mutex_lock(), pthread_mutex_timedlock(), pthread_mutex_trylock().

5.8 Interfaces for the Scheduler Thread: Scheduling Events Set Manipula-
tion

5.8.1 Synopsis

#include <sched.h>

int posix_appsched_emptyset
 (posix_appsched_eventset_t *set);

int posix_appsched_fillset
 (posix_appsched_eventset_t *set);

int posix_appsched_addset
 (posix_appsched_eventset_t *set, int appsched_event);

int posix_appsched_delset
 (posix_appsched_eventset_t *set, int appsched_event);

int posix_appsched_ismember
 (const posix_appsched_eventset_t *set, int appsched_event);

5.8.2 Description

The posix_appsched_emptyset() function shall eliminate all the scheduling event codes from the
set pointed to by set.

The posix_appsched_fillset() function shall add all the scheduling event codes to the set pointed
to by set.

The posix_appsched_addset() function shall add the scheduling event code represented by
appsched_event to the set pointed to by set.

Page 26 24/7/02 Application Scheduling Interface

The posix_appsched_delset() function shall eliminate the scheduling event code represented by
appsched_event from the set pointed to by set.

The posix_appsched_ismember() function shall return one if the scheduling event code repre-
sented by appsched_event is a member of the set pointed to by set. Otherwise, it shall return zero.

5.8.3 Returns

Upon successful completion, the posix_appsched_ismember() function shall return a value of one
if the specified event code is a member of the specified set, or a value of zero if it is not. Upon
successful completion, the other functions shall return a value of zero. For all of the above func-
tions, if an error is detected, an error number is returned.

5.8.4 Errors

If any of the following conditions is detected, the posix_appsched_addset(),
posix_appsched_addset(), and posix_appsched_ismember() functions shall return the following
error number:

[EINVAL] The value of appsched_event is invalid.

5.8.5 Cross-References

posix_appschedattr_seteventmask(), posix_appschedattr_geteventmask().

5.9 Interfaces for the Scheduler Thread: Scheduler attributes

5.9.1 Synopsis

#include <sched.h>

int posix_appschedattr_setclock (clockid_t clockid);

int posix_appschedattr_getclock (clockid_t *clockid);

int posix_appschedattr_setflags (int flags);

int posix_appschedattr_getflags (int *flags);

int posix_appschedattr_seteventmask
 (const posix_appsched_eventset_t *set);

int posix_appschedattr_geteventmask
 (posix_appsched_eventset_t *set);

int posix_appschedattr_setreplyinfo (const void *reply, int reply_size);

int posix_appschedattr_getreplyinfo (void *reply, int *reply_size);

5.9.2 Description

The posix_appschedattr_setclock() and posix_appschedattr_getclock() functions respectively set
and get the clockid attribute of the scheduler thread that calls the function. This is the clock

Application Scheduling Interface 24/7/02 Page 27

that shall be used to report the current time in the posix_appsched_execute_actions() function, if
requested, and for the timeout of the same function. The default value of the clockid attribute
shall be CLOCK_REALTIME. If successful, the posix_appschedattr_setclock() function shall set
the value of the attribute to clockid.

The posix_appschedattr_setflags() and posix_appschedattr_getflags() functions respectively set
and get the flags attribute of the scheduler thread that calls the function. The default value of
the flags attribute is with no flags set. If successful, the posix_appschedattr_setflags() function
shall set the value of the attribute to flags. The following flags shall be defined in <sched.h>:

POSIX_APPSCHED_ABSTIMEOUT:
If this flag is set in flags, the value of the timeout parameter in a call to
posix_appsched_execute_actions() shall represent an absolute time at
which the timeout expires, according to the clock specified by the clockid
attribute. If the time specified by timeout has already passed at the time of
the call and there are no scheduling events to be reported, the timeout ex-
pires immediately and thus the function does not block. If this flag is not
set in flags, the timeout parameter shall represent a relative time inter-
val, after which the timeout expires. This interval shall be measured using
the clock specified by the clockid attribute.

The posix_appschedattr_seteventmask() and posix_appschedattr_geteventmask() functions re-
spectively set and get the eventmask attribute of the scheduler thread that calls the function.
This is the set of scheduling events that shall be masked, i.e., not reported to this scheduler
thread. The default value of the eventmask attribute is with an empty set, i.e., all events are
reported to the scheduler. If successful, the posix_appschedattr_seteventmask() function shall set
the value of the attribute to set.

The posix_appschedattr_setreplyinfo() and posix_appschedattr_getreplyinfo() functions respec-
tively set and get the replyinfo attribute of the scheduler thread that calls the function. This
is a variable-size memory area containing information that shall be used to return information
to an application scheduled thread that has requested it via a
posix_appsched_invoke_withdata() function. The default value of the replyinfo attribute shall
be a memory area of zero bytes. The maximum size of the replyinfo attribute is specified by the
POSIX_APPSCHEDINFO_MAX variable (see 5.1.2). If successful, the
posix_appschedattr_setreplyinfo() function shall set the value of the attribute equal to the mem-
ory area starting at reply and of size reply_size.

The posix_appschedattr_getreplyinfo() functions has undefined results if the memory area point-
ed to by reply is smaller than the size of the replyinfo attribute.

If the thread calling any of these functions is not a scheduler thread, then the function shall fail.

5.9.3 Returns

Upon successful completion, posix_appschedattr_setclock(), posix_appschedattr_setflags(), and
posix_appschedattr_seteventmask() shall return zero. Otherwise, an error number shall be re-
turned to indicate the error.

Upon successful completion, posix_appschedattr_getclock(), shall set the value of the clockid
attribute in the variable pointed to by clockid and shall return zero. Otherwise, an error number
shall be returned to indicate the error.

Page 28 24/7/02 Application Scheduling Interface

Upon successful completion, posix_appschedattr_getflags(), shall set the value of the flags at-
tribute in the variable pointed to by flags and shall return zero. Otherwise, an error number
shall be returned to indicate the error.

Upon successful completion, posix_appschedattr_geteventmask(), shall set the value of the
eventmask attribute in the variable pointed to by set and shall return zero. Otherwise, an error
number shall be returned to indicate the error.

Upon successful completion, posix_appschedattr_getreplyinfo(), shall set the value of the vari-
able pointed to by reply_size to the size of the replyinfo attribute, shall copy the contents of
the attribute into the memory area pointed to by reply, and shall return zero. Otherwise, an er-
ror number shall be returned to indicate the error.

5.9.4 Errors

If any of the following conditions is detected, the posix_appschedattr_setclock(),
posix_appschedattr_setflags(), posix_appschedattr_seteventmask(), and
posix_appschedattr_setreplyinfo() functions shall return the following error number:

[EINVAL] The value of one of the arguments is invalid.

If any of the following conditions occurs, the posix_appschedattr_setclock(),
posix_appschedattr_setflags(), posix_appschedattr_seteventmask(),
posix_appschedattr_setreplyinfo(), posix_appschedattr_getclock(), posix_appschedattr_getflags(),
posix_appschedattr_geteventmask(), and posix_appschedattr_getreplyinfo() functions shall re-
turn the following error number:

[EPOLICY] The calling thread is not an application scheduler.

5.9.5 Cross-References

posix_appsched_emptyset(), posix_appsched_fillset(), posix_appsched_addset(),
posix_appsched_delset(), posix_appsched_ismember(), posix_appsched_execute_actions(),
posix_appsched_invoke_withdata().

5.10 Interfaces for the Scheduled Thread: Explicit Scheduler Invocation

5.10.1 Synopsis

#include <sched.h>

int posix_appsched_invoke_scheduler (int user_event_code);

int posix_appsched_invoke_withdata
 (const void *msg, size_t msg_size, void *reply, size_t *reply_size);

5.10.2 Description

The posix_appsched_invoke_scheduler() or posix_appsched_invoke_withdata() functions are
used by an application-scheduled thread to explicitly invoke its application scheduler.

Application Scheduling Interface 24/7/02 Page 29

If successful, the posix_appsched_invoke_scheduler() function shall generate a scheduling event
with code POSIX_APPSCHED_EXPLICIT_CALL, a thread member equal to the thread id of the
calling thread, and an event_info member with its user_event_code member equal to
user_event_code. This event shall be inserted in the scheduling events queue of the scheduler
thread of the calling thread, and then the calling thread shall become suspended. The function
call will return after the scheduler thread activates the calling thread via a
posix_appsched_execute_actions() call.

If successful, the posix_appsched_invoke_withdata() function shall generate a scheduling event
with code POSIX_APPSCHED_EXPLICIT_CALL_WITH_DATA, a thread member equal to the
thread Id of the calling thread, and an info_size member equal to msg_size. In addition, if
msg_size is larger than zero, the function shall make available to the scheduler thread a memory
area whose contents are identical to the memory area pointed to by msg and of size msg_size,
and shall set the event_info member of the event with its info member pointing to that area of
memory1. This event shall be inserted in the scheduling events queue of the scheduler thread
of the calling thread, and then the calling thread shall become suspended. When the scheduler
thread activates the calling thread via a posix_appsched_execute_actions() call, if the reply argu-
ment is non NULL, the replyinfo attribute of the scheduler thread is copied into the memory
area pointed to by reply, and its size is copied into the variable pointed to by reply_size. If the
size of that memory area is smaller than the size of the replyinfo attribute, results are unde-
fined. The replyinfo attribute is set by the scheduler thread via a call to
posix_appsched_setreplyinfo(). Its size is limited to the variable POSIX_APPSCHEDINFO_MAX
(see 5.1.2).

The posix_appsched_invoke_withdata() function shall fail if the size specified by msg_size is larg-
er than the variable POSIX_APPSCHEDINFO_MAX (see 5.1.2).

The calling thread shall be an application-scheduled thread for these functions to succeed. The
scheduler thread shall have the corresponding scheduling event unmasked, for these functions
to succeed.

5.10.3 Returns

Upon successful completion, posix_appsched_invoke_scheduler() and
posix_appsched_invoke_withdata() shall return zero. Otherwise, an error number shall be re-
turned to indicate the error.

5.10.4 Errors

If any of the following conditions occurs, the posix_appsched_invoke_scheduler() and
posix_appsched_invoke_withdata() functions shall return the following error number:

[EPOLICY] The calling thread is not an application-scheduled thread.

[EMASKED] The operation cannot be executed because the associated scheduling event
is currently masked by the application scheduler.

If any of the following conditions occurs, the posix_appsched_invoke_withdata() function shall
return the following error number:

1. In an implementation in which the scheduler is in the same address space as its threads, copying the
information is not needed, and the function may just copy the pointer and size arguments.

Page 30 24/7/02 Application Scheduling Interface

[EINVAL] The value of msg_size is less than zero or is larger than
POSIX_APPSCHEDINFO_MAX.

If any of the following conditions is detected, the posix_appsched_invoke_withdata() function
shall return the following error number:

[EINVAL] The value of msg is invalid.

5.10.5 Cross-References

posix_appsched_setreplyinfo(), posix_appsched_execute_actions().

5.11 Access to Specific Data of Other Threads

5.11.1 Synopsis

#include <pthread.h>

int pthread_setspecific_for
 (pthread_key_t key, pthread_t thread, const void *value)

int pthread_getspecific_from
 (pthread_key_t key, pthread_t thread, void **value)

5.11.2 Description

If successful, the pthread_setspecific_for() function shall associate a thread-specific value with a
key obtained via a previous call to pthread_key_create(), on behalf of the thread specified by
thread. These values are typically pointers to blocks of dynamically allocated memory that have
been reserved for use by the calling thread1.

If successful, the pthread_getspecific_from() function shall store in the variable pointed to by
value the value currently bound to the specified key on behalf of the thread specified by thread.

The effect of calling pthread_setspecific_for() or pthread_getspecific_from() with a key value not
obtained from pthread_key_create() or after key has been deleted with pthread_key_delete() is un-
defined.

Both pthread_setspecific_for() or pthread_getspecific_from() may be called from a thread-specific
data destructor function. However, calling pthread_setspecific_for() from a destructor may result
in lost storage or infinite loops.

5.11.3 Returns

If successful, the pthread_getspecific_from() function stores in the variable pointed to by value
the thread-specific data value associated with the given key; if no thread-specific data value is

1. Because sharing data between a scheduler thread and a regular thread has undefined results, the thread-
specific data interface should not be used to exchange or share information between a scheduler thread
and its scheduled threads.

Application Scheduling Interface 24/7/02 Page 31

associated with key, then the value NULL is returned. In both cases, the function shall return
zero. If the function fails , an error number shall be returned to indicate the error

If successful, the pthread_setspecific_for() function shall return zero. Otherwise, an error num-
ber shall be returned to indicate the error.

5.11.4 Errors

If any of the following conditions occur, the pthread_setspecific_for() function shall return the
corresponding error number:

[ENOMEM] Insufficient memory exists to associate the value with the key.

If any of the following conditions are detected, the pthread_setspecific_for() function shall return
the corresponding error number:

[EINVAL] The key value is invalid.

If any of the following conditions are detected, the pthread_setspecific_for() and
pthread_getspecific_from() functions shall return the corresponding error number:

[ESRCH] No thread could be found corresponding to that specified by the given
thread Id.

5.11.5 Cross-References

pthread_key_create(), pthread_setspecific(), pthread_getspecific(), pthread_key_delete().

5.11.6 Rationale

Thread-specific data is a very useful mechanism for attaching information to a particular
thread, and in particular, to attach scheduling information. However, the information in the
thread-specific data currently defined in POSIX.1 is only accessible to the thread to which it is
attached. In the context of application-defined scheduling, it is useful for the application sched-
uler to access the thread-specific data of its scheduled threads. This data is not usually shared
by different threads, but just set and used by the application scheduler itself.

It could be argued that an independent data structure could be created using the thread id as an
index or with a hash function that would make access efficient. However, the pthread_t type is
defined as an opaque type for which there are no comparison operators (just a pthread_equal()
function for comparison), and therefore any data structure using a pthread_t index and built at
the application level is necessarily very inefficient.

For these reasons the thread-specific data interface has been extended with the functions de-
fined in this subclause.

6. Modifications to Existing Thread Functions

6.1 Thread Creation Scheduling Attributes

The SCHED_APP policy, described in 5.1.3, shall be supported by pthread_attr_setschedpolicy().

Page 32 24/7/02 Application Scheduling Interface

6.2 Dynamic Thread Scheduling Parameters Access

If pthread_setschedparam() is called for a thread whose scheduling policy is SCHED_APP to set
that policy to a different one, a POSIX_APPSCHED_TERMINATE event shall be generated for the
current application scheduler of that thread, with a thread member equal to the thread argu-
ment; if that event is masked in that application scheduler it is ignored.

If pthread_setschedparam() is called for a thread whose scheduling policy is SCHED_APP and the
policy argument continues to be SCHED_APP, a POSIX_APPSCHED_CHANGE_SCHED_PARAM
event shall be generated for the current application scheduler of that thread, with a thread mem-
ber equal to the thread argument; if that event is masked in that application scheduler it is ig-
nored.

If pthread_setschedparam() is called for a thread whose scheduling policy is different than
SCHED_APP to set that policy to SCHED_APP, a check shall be made to determine if the app-
scheduler attribute of that thread is a valid application scheduler. If not, the function shall
fail. If it is valid, a POSIX_APPSCHED_NEW event shall be generated for that application sched-
uler with a thread member equal to the thread argument, and the calling thread will be suspend-
ed until the application scheduler of thread executes an “accept” or “reject” action on that thread,
via posix_appsched_execute_actions(). If the action is “reject”, the pthread_setschedparam() func-
tion shall fail. The function shall also fail if the priority of thread is larger than the priority of
the application scheduler specified in the appscheduler attribute of that thread. The
pthread_setschedparam() function shall fail if the POSIX_APPSCHED_NEW scheduling event is
masked by the corresponding application scheduler.

The following new error conditions are defined for pthread_setschedparam():

[EINVAL] The appscheduler attribute of thread does not refer to a valid application
scheduler at the time of the call.

The priority of thread is larger than the priority of the application sched-
uler specified in the appscheduler attribute of that thread.

[EREJECT] The application scheduler has rejected attachment of the requested
thread.

[EMASKED] The operation cannot be executed because the POSIX_APPSCHED_NEW
scheduling event is currently masked by the application scheduler.

6.3 Thread Creation

If the attributes object used in a call to pthread_create() has its scheduling policy set to
SCHED_APP, a check shall be made to determine if the appscheduler attribute of that at-
tributes object is a valid application scheduler. If not, the function shall fail. If it is valid, after
the thread is created, a POSIX_APPSCHED_NEW event shall be generated for that application
scheduler with a thread member equal to the thread Id of the newly created thread, and the call-
ing thread will be suspended until the application scheduler executes an “accept” or “reject” ac-
tion on that thread, via posix_appsched_execute_actions(). If the action is “reject”, the
pthread_create() function shall fail. The pthread_create() function shall fail if the
POSIX_APPSCHED_NEW event is masked by the corresponding application scheduler. The
function shall also fail if the priority of the new thread, stored in the sched_priority member of
the schedparam attribute in attr, is larger than the priority of the application scheduler speci-
fied in the appscheduler attribute.

The following new error conditions are defined for pthread_create():

Application Scheduling Interface 24/7/02 Page 33

[EINVAL] The appscheduler attribute of attr does not refer to a valid application
scheduler at the time of the call.

The priority of the sched_priority member of the schedparam attribute in
attr is larger than the priority of the application scheduler specified in the
appscheduler attribute.

[EREJECT] The application scheduler has rejected attachment of the requested
thread.

[EMASKED] The operation cannot be executed because the POSIX_APPSCHED_NEW
scheduling event is currently masked by the application scheduler.

6.4 Thread termination and cancellation

After execution of the cleanup handlers and of the destructor functions of any thread-specific
data by an explicit or implicit call to pthread_exit() or by a call to pthread_cancel(), if the termi-
nating thread has a scheduling policy of SCHED_APP, a POSIX_APPSCHED_TERMINATE event
shall be generated for the application scheduler of the terminating thread with a thread member
equal to its thread Id. The terminating thread will be permitted to finish its termination opera-
tion concurrently with the processing of the generated event by the application scheduler. If the
event is masked in that application scheduler, it is just ignored.

The termination of a scheduler thread (either because it calls pthread_exit(), or because the ex-
ecution of its body terminates, or because it is cancelled) which has scheduled threads attached
to it has undefined results. Applications should make sure that a scheduler thread only termi-
nates if it has no attached threads.

6.4.1 Rationale

Because thread-specific data is destroyed when the thread terminates, the application scheduler
processing a POSIX_APPSCHED_TERMINATE event should not attempt using it. If it is necessary
for the scheduler to perform operations on the terminating thread just before its termination, it
could install a cancellation handler that could invoke the scheduler explicitly. Cancellation han-
dlers are executed before destroying thread-specific data.

7. Use of Regular Mutexes by Application-Scheduled Threads

When an application-scheduled thread locks or unlocks a regular mutex (i.e., one that has not
been created with the PTHREAD_APPSCHED_PROTOCOL protocol) its priority is changed ac-
cording to the mutex protocol. In addition, if the mutex uses the priority inheritance or priority
ceiling protocols, a scheduling event of type POSIX_APPSCHED_PRIORITY_INHERIT or
POSIX_APPSCHED_PRIORITY_UNINHERIT is queued to the scheduler thread at the time a pri-
ority is inherited or uninherited. The scheduler thread shall inherit (or uninherit) the same ac-
tive system priority or priorities of its scheduled threads.

If the application-scheduled thread tries to lock an already locked mutex, it is queued in the mu-
tex queue in the same way as for any other thread. Besides this queuing, a scheduling event of
type POSIX_APPSCHED_BLOCK is sent to the scheduler thread, as for any other blocking situa-
tion.

The events of type POSIX_APPSCHED_PRIORITY_INHERIT and
POSIX_APPSCHED_PRIORITY_UNINHERIT can be used by the application scheduler to keep the

Page 34 24/7/02 Application Scheduling Interface

thread that locked the mutex in execution. Otherwise, regular threads that use the same mutex
could suffer priority inversion due to the execution of other application-scheduled threads.

8. Management of Application-Scheduled Mutexes

8.1 Data definitions

8.1.1 Application-Scheduled Mutex Protocol

The following mutex protocol constant shall be defined in <pthread.h>:

When this protocol is set for a mutex, the mutex shall only be used by threads scheduled under
the scheduler referenced by the appscheduler attribute of the mutex. In addition, scheduling
events are notified to the scheduler thread under the following circumstances:

• when a thread invokes the lock operation of the mutex,
• when a thread invokes the trylock operation of the mutex,
• when a thread unlocks the mutex,
• when a thread blocks waiting for the mutex,
• when a thread changes the scheduling parameters of the mutex.

8.1.2 Application-Scheduled Mutex Attributes

All application-scheduled mutexes shall support the appscheduler attribute that represents
the scheduler thread that will schedule threads using that mutex. The default value of this at-
tribute is unspecified. If at the time of the mutex creation the protocol is
PTHREAD_APPSCHED_PROTOCOL and the appscheduler attribute does not refer to a valid
application scheduler thread, the corresponding pthread_mutex_init() operation shall fail with
an error of [EINVAL].

In addition, all application-scheduled mutexes shall support the appschedparam attribute,
which represents an area of memory containing the application-specific scheduling parameters
used for that mutex. The default value of this attribute is a memory area of zero bytes. The max-
imum size of this attribute in bytes shall be represented by the variable
POSIX_APPMUTEXPARAM_MAX (see 5.1.2).

8.2 Application-Scheduled Mutex Attributes Manipulation

8.2.1 Synopsis

#include <pthread.h>

Table 3:

Symbol Description

PTHREAD_APPSCHED_PROTOCOL Application-defined protocol

Application Scheduling Interface 24/7/02 Page 35

int pthread_mutexattr_setappscheduler
(pthread_mutexattr_t *attr,
 pthread_t scheduler);

int pthread_mutexattr_getappscheduler
(const pthread_mutexattr_t *attr,
 pthread_t *scheduler);

int pthread_mutexattr_setappschedparam
(pthread_mutexattr_t *attr,
 const void *param,

 size_t param_size);

int pthread_mutexattr_getappschedparam
(const pthread_mutexattr_t *attr,
 void *param,
 size_t *paramsize);

8.2.2 Description

The pthread_mutexattr_setappscheduler() and pthread_mutexattr_getappscheduler() functions
shall respectively set and get the appscheduler attribute of the mutex attributes object speci-
fied by attr. This attribute is described in 8.1.2. If successful, the
pthread_mutexattr_setappscheduler() shall set the attribute equal to scheduler. For this function
to succeed, scheduler must be a valid application scheduler at the time of the call.

The pthread_mutexattr_setappschedparam() and pthread_mutexattr_getappschedparam() func-
tions shall respectively set and get the appschedparam attribute of the mutex attributes object
specified by attr. This attribute is described in 8.1.2. If successful, the
pthread_mutexattr_setappschedparam() function shall set the size of the attribute to paramsize
and shall copy the memory area pointed to by param of length paramsize into the attribute. If
paramsize is larger than POSIX_APPMUTEXPARAM_MAX, the function shall fail.

The pthread_mutexattr_getappschedparam() function shall copy the contents of the appsched-
param attribute into the memory area pointed to by param. This memory area shall be capable
of storing at least a number of bytes equal to the size of the appschedparam attribute; other-
wise, the results are undefined.

8.2.3 Returns

Upon successful completion, pthread_mutexattr_setappscheduler(),
pthread_mutexattr_setappschedparam(), pthread_mutexattr_getappscheduler(), and
pthread_mutexattr_getappschedparam() shall return a value of 0. Otherwise an error number
shall be returned to indicate the error.

The pthread_mutexattr_getappscheduler() function stores the appscheduler attribute in the
variable pointed to by scheduler if successful.

The pthread_attr_getappschedparam() function stores the size of the appschedparam attribute
in the variable pointed to by paramsize, and copies the contents of the appschedparam attribute
into the memory area pointed to by param.

Page 36 24/7/02 Application Scheduling Interface

8.2.4 Errors

If any of the following conditions occur, the pthread_mutexattr_setappscheduler() function shall
return the corresponding error number:

[EINVAL] The value of scheduler was not valid.

If any of the following conditions occur, the pthread_mutexattr_setappschedparam() function
shall return the corresponding error number:

 [EINVAL] The value of paramsize was smaller than zero, or was larger than
POSIX_APPMUTEXPARAM_MAX.

If any of the following conditions are detected, the pthread_mutexattr_setappschedparam() func-
tion shall return the corresponding error number:

[EINVAL] The value of param was invalid.

8.2.5 Cross-References

pthread_mutex_init().

8.3 Dynamically Changing the Application-Scheduled Mutex Attributes

8.3.1 Synopsis

#include <pthread.h>

int pthread_mutex_getappscheduler
(const pthread_mutex_t *mutex,
 pthread_t *scheduler);

int pthread_mutex_setappschedparam
(pthread_mutex_t *mutex,
 const void *param,
 size_t param_size);

int pthread_mutex_getappschedparam
(const pthread_mutex_t *mutex,
 void *param,
 size_t *paramsize);

8.3.2 Description

The pthread_mutex_getappscheduler() function is used to dynamically get the appscheduler
attribute of the mutex specified by mutex. This attribute is described in 8.1.2.

The pthread_mutex_setappschedparam() and pthread_mutex_getappschedparam() functions are
used to dynamically set and get the appschedparam attribute of the mutex attributes object
specified by mutex. This attribute is described in 8.1.2.

If successful, the pthread_mutex_setappschedparam() function shall acquire the lock on the mu-
tex. Then it shall set the size of the appschedparam attribute to the value specified by param-
size, and it shall copy the scheduling parameters occupying paramsize bytes and pointed to by

Application Scheduling Interface 24/7/02 Page 37

param into that attribute. In addition, if the protocol of mutex is
PTHREAD_APPSCHED_PROTOCOL and if the
POSIX_APPSCHED_CHANGE_MUTEX_SCHED_PARAM event is not masked in the application
scheduler of that mutex, the function shall generate a
POSIX_APPSCHED_CHANGE_MUTEX_SCHED_PARAM event for that application scheduler and
shall suspend until the scheduled thread activates it via a posix_appsched_execute_actions() call.
Finally, the function shall release the lock on the mutex.

For the pthread_mutex_setappschedparam() function to succeed, the calling thread must be an
application-scheduled thread scheduled by the same thread as the mutex.

The memory area represented by param in the call to pthread_getappschedparam() shall be ca-
pable of storing at least a number of bytes equal to the size of the appschedparam attribute;
otherwise, the results are undefined.

8.3.3 Returns

Upon successful completion, pthread_mutex_getappscheduler(),
pthread_mutex_setappschedparam(), and pthread_mutex_getappschedparam() shall return a
value of 0. Otherwise an error number shall be returned to indicate the error.

The pthread_mutex_getappscheduler() function stores the appscheduler attribute in the vari-
able pointed to by scheduler, if successful.

The pthread_mutex_getappschedparam() function stores the size of the appschedparam at-
tribute in the variable pointed to by paramsize, and copies the contents of the appschedparam
attribute into the memory area pointed to by param, if successful.

8.3.4 Errors

If any of the following conditions occur, the pthread_mutex_setappschedparam() function shall
return the corresponding error number:

[EINVAL] The value of paramsize was less than zero, or was larger than
POSIX_APPMUTEXPARAM_MAX.

[EPOLICY] The calling thread is not an application-scheduled thread scheduled by the
same thread as the mutex.

If any of the following conditions are detected, the pthread_mutex_setappschedparam() function
shall return the corresponding error number:

[EINVAL] The value of param was invalid.

If any of the following conditions are detected, the pthread_mutex_getappscheduler(),
pthread_mutex_setappschedparam(), and pthread_mutex_getappschedparam() functions shall
return the corresponding error number:

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.

If any of the following conditions are detected, the pthread_mutex_setappschedparam() function
shall return the corresponding error number:

[EDEADLK] The current thread already owns the mutex.

Page 38 24/7/02 Application Scheduling Interface

8.3.5 Cross-References

pthread_mutex_init(), pthread_mutexattr_setappscheduler,
pthread_mutexattr_setappschedparam().

8.3.6 Rationale

The capability of switching a mutex from one application scheduler to another one is not provid-
ed because it can be implemented by destroying the mutex and initializing it again, with new
attributes.

8.4 Mutex-Specific Data

8.4.1 Synopsis

int posix_appsched_mutex_setspecific
(pthread_mutex_t *mutex,
 const void *value);

int posix_appsched_mutex_getspecific
(const pthread_mutex_t *mutex,
 void **value);

8.4.2 Description

In successful, the posix_appsched_mutex_setspecific() function shall associate a mutex-specific
value with the mutex specified by mutex. This value is typically a pointer to a block of dynami-
cally allocated memory that has been reserved for use by the calling thread1.

In successful, the posix_appsched_mutex_getspecific() function shall store in the variable pointed
to by value the value currently bound to the specified mutex.

8.4.3 Returns

If successful, the posix_appsched_mutex_getspecific() function stores in the variable pointed to
by value the mutex-specific data value associated with mutex; if no mutex-specific data value is
associated with it, then the value NULL is returned. In both cases, the function shall return zero.
If the function fails, an error number shall be returned to indicate the error.

If successful, the posix_appsched_mutex_setspecific() function shall return zero. Otherwise, an
error number shall be returned to indicate the error.

1. Because sharing data between a scheduler thread and a regular thread has undefined results, the mutex-
specific data interface should not be used to exchange or share information between a scheduler thread
and its scheduled threads.

Application Scheduling Interface 24/7/02 Page 39

8.4.4 Errors

If any of the following conditions are detected, the posix_appsched_mutex_setspecific() and
posix_appsched_mutex_getspecific() functions shall return the corresponding error number:

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.

8.4.5 Cross-References

pthread_setspecific(), pthread_getspecific(), pthread_setspecific_for(), pthread_getspecific_from().

8.4.6 Rationale

POSIX.1 defines a thread-specific data mechanism that is very useful for attaching information
to a particular thread, and in particular, to attach scheduling information. However, the stan-
dard does not define a similar functionality for mutexes, which would be very useful in the con-
text of writing application schedulers. For this reason the mutex-specific data interface has been
introduced.

8.5 Modifications to existing functions: Initializing and Destroying a Mutex

If the mutex attributes object used in a call to pthread_mutex_init() has its protocol attribute
set to POSIX_APPSCHED_PROTOCOL, a check shall be made to determine if the appscheduler
attribute of that attributes object is a valid application scheduler. If not, the function shall fail.
If it is valid, after the mutex is initialized, a POSIX_APPSCHED_INIT_MUTEX event shall be gen-
erated for that application scheduler with a mutex member equal to mutex, and the calling
thread shall be suspended until the application scheduler executes an “mutex-accept” or “mutex-
reject” action on that mutex, via posix_appsched_execute_actions(). If the action is “mutex-re-
ject”, the pthread_mutex_init() function shall fail. The pthread_mutex_init() function shall fail if
the POSIX_APPSCHED_INIT_MUTEX event is masked by the corresponding application schedul-
er.

The following new error conditions are defined for pthread_mutex_init():

[EINVAL] The appscheduler attribute of attr does not refer to a valid application
scheduler at the time of the call.

[EREJECT] The application scheduler has rejected attachment of the requested mutex.

[EMASKED] The operation cannot be executed because the
POSIX_APPSCHED_INIT_MUTEX scheduling event is currently masked by
the application scheduler.

If the mutex specified in a call to pthread_mutex_destroy() has its protocol attribute set to
POSIX_APPSCHED_PROTOCOL and the POSIX_APPSCHED_DESTROY_MUTEX event is not masked
in the application scheduler of that mutex, after destroying the mutex one such event shall be
generated for that application scheduler with a mutex member equal to mutex, and the calling
thread shall be suspended until the application scheduler activates it via a “thread-activate” ac-
tion in a call to posix_appsched_execute_actions().

Page 40 24/7/02 Application Scheduling Interface

8.6 Modifications to existing functions: Locking and Unlocking a Mutex

If the mutex specified in a call to pthread_mutex_lock(), has its protocol attribute set to
POSIX_APPSCHED_PROTOCOL, before the mutex is locked, a POSIX_APPSCHED_LOCK_MUTEX
event shall be generated for the application scheduler of the mutex with a mutex member equal
to mutex, and the calling thread shall be suspended until the application scheduler executes a
“mutex-lock” action on that mutex, via posix_appsched_execute_actions(). After that action the
function shall return with the mutex locked. The pthread_mutex_lock() function shall fail if the
POSIX_APPSCHED_LOCK_MUTEX event is masked by the corresponding application scheduler.

The pthread_mutex_timedlock() function shall behave the same as pthread_mutex_lock(), with
the additional requirement that if the timeout expires and the POSIX_APPSCHED_READY event
is not masked by the application scheduler, the thread discontinues its wait on the mutex, a
POSIX_APPSCHED_READY is generated for that scheduler, and the thread is suspended until activated
via a “thread-activate” action executed by posix_appsched_execute_actions().

The following new error condition is defined for pthread_mutex_lock() and
pthread_mutex_timedlock():

[EMASKED] The operation cannot be executed because the
POSIX_APPSCHED_LOCK_MUTEX scheduling event is currently masked
by the application scheduler.

If the mutex specified in a call to pthread_mutex_trylock(), has its protocol attribute set to
POSIX_APPSCHED_PROTOCOL, before the mutex is locked, a
POSIX_APPSCHED_TRYLOCK_MUTEX event shall be generated for the application scheduler of
the mutex with a mutex member equal to mutex, and the calling thread shall be suspended until
the application scheduler executes either a “mutex-lock” or a “thread-activate” action on that
mutex, via posix_appsched_execute_actions(). If the action is a “mutex-lock”, the function shall
return with the mutex locked; if it is a “thread-activate” the function shall return with an error
of [EBUSY]. The pthread_mutex_lock() function shall fail if the
POSIX_APPSCHED_TRYLOCK_MUTEX event is masked by the corresponding application sched-
uler.

The following new error condition is defined for pthread_mutex_trylock():

[EMASKED] The operation cannot be executed because the
POSIX_APPSCHED_TRYLOCK_MUTEX scheduling event is currently
masked by the application scheduler.

If the mutex specified in a call to pthread_mutex_unlock(), has its protocol attribute set to
POSIX_APPSCHED_PROTOCOL, and the POSIX_APPSCHED_UNLOCK_MUTEX event is not masked
in the application scheduler of that mutex, after releasing the mutex but before granting it to an-
other thread one POSIX_APPSCHED_UNLOCK_MUTEX event shall be generated for the applica-
tion scheduler with a mutex member equal to mutex, and the calling thread shall be suspended
until the application scheduler activates it via a “thread-activate” action in a call to
posix_appsched_execute_actions().

9. OS Implementation Considerations

Each scheduler thread needs a list of all its associated threads, which are scheduled by it. This
is a dynamic list that grows when a new thread joins the scheduler, and shrinks when a sched-
uled thread is terminated or abandons the scheduler.

Application Scheduling Interface 24/7/02 Page 41

This list could be used to determine the active system priority of the scheduler thread, taking
into account the priorities inherited by the scheduled threads.

Each scheduler thread needs a FIFO queue of scheduling events. There is no need to define a
constant for the length of this queue, because it is bounded by two times the maximum number
of threads in the system, plus one. This bound is originated because each application-scheduled
thread in the system can cause at most one scheduling event before executing again, and it will
only execute after the scheduler has processed the generated event. For system scheduled
threads, the only events that are relevant are the priority inheritance or uninheritance, so there
may be in the worst case two events per such task. And in addition, a single timeout or signal
event could be generated.

10. Example of using the defined interface

The following subsections show the code of an implementation of the Earliest Deadline First
(EDF) scheduling policy for periodic threads {B15}. In this policy, each thread defines a period
and a relative deadline as two time intervals. The thread executes periodically, one execution
instance at each period. The nth instance is activated at time t0+nT, when t0 is the initial time,
and T is the period. The nth instance has to complete before its absolute deadline, which is its
activation time plus the relative deadline: t0+nT+D, where D is the relative deadline. The EDF
policy gives the highest priority to the active thread that has the earliest absolute deadline. Be-
cause the absolute deadline changes for every task instance, this is a dynamic priority schedul-
ing policy, in which the priority is the absolute deadline.

The EDF scheduler has a list of threads that are registered for being scheduled under it. The
state of each EDF thread can be active (when it is ready for executing), blocked (if the thread is
blocked at some OS service) or timed (when it has finished its current execution and is waiting
for its next period).

The state of the scheduler itself may be idle (no active or timed threads), waiting (there are
timed threads but no active threads), or running (there are active threads).

The schedule_next() function invoked by the scheduler updates the list of registered threads
based upon the current time. It switches into the active state those timed threads whose activa-
tion time has been reached, and then calculates the next thread to be executed and the earliest
start time of the new set of timed threads.

10.1 EDF Scheduler Thread Interface: File “edf_sched.h”

#include <time.h>

#define MAX_THREADS 30

struct my_sched_param {
 struct timespec deadline;
 struct timespec period;
};

void *edf_scheduler (void *arg);

Page 42 24/7/02 Application Scheduling Interface

10.2 EDF Threads and Main Program

#include <pthread.h>
#include <sched.h>
#include <unistd.h>
#include "edf_sched.h"

/* Scheduled thread */
void * periodic (void * arg)
{
 while (1) {
 /*do useful work */
 posix_appsched_invoke_scheduler (0);
 }
}

int main ()
{
 pthread_attr_t attr;
 struct sched_param param;
 struct my_sched_param user_param;
 pthread_t sched, t1;

 /* Creation of the scheduler thread */
 pthread_attr_init (&attr);
 pthread_attr_setschedpolicy (&attr, SCHED_FIFO);
 pthread_attr_setappschedulerstate (&attr, PTHREAD_APPSCHEDULER);
 param.sched_priority = 5;
 pthread_attr_setschedparam (&attr, ¶m);
 pthread_create (&sched, &attr, edf_scheduler, NULL);
 pthread_attr_destroy(&attr);

 /* Creation of one scheduled thread */
 pthread_attr_init (&attr);
 pthread_attr_setschedpolicy (&attr, SCHED_APP);
 pthread_attr_setappscheduler (&attr, sched);
 user_param.period.tv_sec =1;
 user_param.period.tv_nsec =0;
 user_param.deadline.tv_sec = 0;
 user_param.deadline.tv_nsec = 800000000;
 pthread_attr_setappschedparam (&attr,
 (void *) &user_param,
 sizeof (struct my_sched_param));
 param.sched_priority = 3;
 pthread_attr_setschedparam (&attr, ¶m);
 pthread_create (&t1, &attr, periodic, NULL);

 /* create more threads, do more work... */
}

Application Scheduling Interface 24/7/02 Page 43

10.3 EDF Scheduler Thread Implementation

#include <pthread.h>
#include <sched.h>
#include <unistd.h>
#include "edf_sched.h"
#include "timespec_operations.h"

struct thread_data_t {
 pthread_t thread_id;
 enum {ACTIVE, BLOCKED, TIMED} th_state;
 struct timespec period,deadline; /* relative times */
 struct timespec next_deadline, next_start; /* absolute times */
} thread_data[MAX_THREADS];

int num_of_threads = 0;

pthread_key_t edf_key;

typedef enum {IDLE, WAITING, RUNNING} sch_state_t;

void schedule_next (sch_state_t *sch_state,
 struct thread_data_t **current_thread,
 struct timespec *earliest_start,
 const struct timespec *now)
{
 int t, deadline_th, start_th;
 struct timespec earliest_deadline;
 struct timespec large_time={2147483647,0};

 /* find_next_thread to run and next thread to activate*/
 deadline_th = -1;
 start_th = -1;
 if (num_of_threads>0) {
 earliest_deadline = large_time;
 *earliest_start = large_time;
 for (t=0; t<num_of_threads; t++) {
 /* find threads to wake up */
 if (thread_data[t].th_state==TIMED) {
 if (smaller_or_equal_timespec(&thread_data[t].next_start,now)) {
 thread_data[t].th_state=ACTIVE;
 }
 }
 /* find_next_thread to run */
 if (thread_data[t].th_state==ACTIVE) {
 if (smaller_timespec(&thread_data[t].next_deadline,
 &earliest_deadline)) {
 earliest_deadline=thread_data[t].next_deadline;
 deadline_th = t;
 }
 }
 /* find next thread to activate*/
 if (thread_data[t].th_state==ACTIVE ||

Page 44 24/7/02 Application Scheduling Interface

 thread_data[t].th_state==TIMED) {
 if (smaller_timespec(&thread_data[t].next_start,
 earliest_start))
 {
 *earliest_start=thread_data[t].next_start;
 start_th = t;
 }
 }
 }
 }
 /* process current thread to run and current thread to wakeup */
 if (start_th == -1) {
 *sch_state = IDLE;
 } else {
 if (deadline_th == -1) {
 *sch_state = WAITING;
 } else {
 *sch_state = RUNNING;
 *current_thread = &thread_data[deadline_th];
 }
 }
}

void add_to_list_of_threads (pthread_t thread_id,
 const struct timespec *now)
{
 struct my_sched_param param;
 size_t param_size;

 if (num_of_threads<MAX_THREADS) {
 pthread_getappschedparam (thread_id, ¶m, ¶m_size);
 thread_data[num_of_threads].period = param.period;
 thread_data[num_of_threads].deadline = param.deadline;
 thread_data[num_of_threads].next_start = *now;
 add_timespec(&thread_data[num_of_threads].next_start,
 ¶m.deadline,
 &thread_data[num_of_threads].next_deadline);
 num_of_threads++;
 thread_data[num_of_threads].th_state=ACTIVE;
 thread_data[num_of_threads].thread_id=thread_id;
 pthread_setspecific_for (edf_key, thread_id,
 &thread_data[num_of_threads]);
 }
}

void eliminate_from_list_of_threads (pthread_t thread_id)
{
 int found=-1;
 int t;

 // At this point 'pthread_getspecific_from' cannot be used because
 // the thread is already terminated, so a search has to be performed.
 for (t=0;t<num_of_threads;t++) {

Application Scheduling Interface 24/7/02 Page 45

 if (pthread_equal (thread_data[t].thread_id, thread_id)) {
 found=t;
 break;
 }
 }
 if (found>=0) {
 num_of_threads--;
 for (t=found;t<num_of_threads;t++) {
 thread_data[t]=thread_data[t+1];
 }
 }
}

void make_ready (pthread_t thread_id)
{
 struct thread_data_t *td;

 pthread_getspecific_from (edf_key, thread_id, (void **)&td);
 td->th_state=ACTIVE;
}

void make_blocked (pthread_t thread_id)
{
 struct thread_data_t *td;

 pthread_getspecific_from (edf_key, thread_id, (void **)&td);
 td->th_state=BLOCKED;
}

void make_timed (pthread_t thread_id)
{
 struct thread_data_t *td;

 pthread_getspecific_from (edf_key, thread_id, (void **)&td);
 td->th_state=TIMED;
 incr_timespec(&td->next_start, &td->period);
 incr_timespec(&td->next_deadline, &td->period);
}

void *edf_scheduler (void *arg)
{
 posix_appsched_actions_t actions;
 struct posix_appsched_event sched_event;
 struct timespec earliest_start,now;
 struct thread_data_t *new_thread, *current_thread = NULL;
 sch_state_t sch_state;

 /* Init scheduler */
 posix_appschedattr_setclock (CLOCK_REALTIME);
 posix_appschedattr_setflags (POSIX_APPSCHED_ABSTIMEOUT);
 clock_gettime(CLOCK_REALTIME, &now);
 posix_appsched_actions_init (&actions);
 pthread_key_create (&edf_key, NULL);

Page 46 24/7/02 Application Scheduling Interface

 while (1) {
 schedule_next (&sch_state, &new_thread, &earliest_start, &now);
 /* schedule thread */
 switch (sch_state) {
 case IDLE :
 posix_appsched_execute_actions
 (&actions,NULL,NULL,&now,&sched_event);
 break;
 case WAITING :
 posix_appsched_execute_actions (&actions,NULL,&earliest_start,
 &now,&sched_event);
 break;
 case RUNNING :
 /* Set scheduling actions */
 if (new_thread != current_thread) {
 // Activate new thread
 posix_appsched_actions_addactivate
 (&actions, new_thread->thread_id);
 if (current_thread->th_state == ACTIVE) {
 // Suspend old thread
 posix_appsched_actions_addsuspend (&actions,
 current_thread->thread_id);
 }
 current_thread = new_thread;
 }
 posix_appsched_execute_actions
 (&actions, NULL, &earliest_start, &now, &sched_event);
 }
 posix_appsched_actions_reset (&actions);

 /* Process scheduling events */
 switch (sched_event.event_code) {
 case POSIX_APPSCHED_NEW :
 add_to_list_of_threads (sched_event.thread,&now);
 posix_appsched_actions_addaccept (&actions, sched_event.thread);
 break;
 case POSIX_APPSCHED_TERMINATE :
 eliminate_from_list_of_threads (sched_event.thread);
 break;
 case POSIX_APPSCHED_READY :
 make_ready (sched_event.thread);
 break;
 case POSIX_APPSCHED_BLOCK :
 make_blocked (sched_event.thread);
 break;
 case POSIX_APPSCHED_EXPLICIT_CALL :
 make_blocked (sched_event.thread);
 break;
 case POSIX_APPSCHED_TIMEOUT :
 /* no action needed */
 break;

Application Scheduling Interface 24/7/02 Page 47

 }
 }
}

References

{B1} ISO/IEC 9945-1 (1996). ISO/IEC Standard 9945-1:1996. Information Technology -Porta-
ble Operating System Interface (POSIX)- Part 1: System Application Program Interface
(API) [C Language]. Institute of Electrical and electronic Engineers.

{B2} L. Abeni and G. Buttazzo. “Integrating Multimedia Applications in Hard Real-Time Sys-
tems”. Proceedings of the IEEE Real-Time Systems Symposium, Madrid, Spain, December
1998

{B3} M. Aldea Rivas and M. González Harbour. “POSIX-Compatible Application-Defined
Scheduling in MaRTE OS”. Proceedings of the Work in Progress Session, 13th Euromi-
cro Conference on Real-Time Systems, Delft, The Netherlands, June 2001.

{B4} M. Aldea and M. González. “MaRTE OS: An Ada Kernel for Real-Time Embedded Appli-
cations”. Proceedings of the International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science, LNCS 2043, May,
2001.

{B5} POSIX.1d (1999). IEEE Std. 1003.d-1999. Information Technology -Portable Operating
System Interface (POSIX)- Part 1: System Application Program Interface (API) Amend-
ment: Additional Realtime Extensions [C Language]. The Institute of Electrical and Elec-
tronics Engineers.

{B6} POSIX.13 (1998). IEEE Std. 1003.13-1998. Information Technology -Standardized Appli-
cation Environment Profile- POSIX Realtime Application Support (AEP). The Institute of
Electrical and Electronics Engineers.

{B7} POSIX.5b (1996). IEEE Std 1003.5b-1996, Information Technology—POSIX Ada Lan-
guage Interfaces—Part 1: Binding for System Application Program Interface (API)—
Amendment 1: Realtime Extensions. The Institute of Electrical and Engineering Electron-
ics.

{B8} Y.C. Wang and K.J. Lin, “Implementing a general real-time scheduling framework in the
red-linux real-time kernel”. Proceedings of IEEE Real-Time Systems Symposium, Phoenix,
December 1999.

{B9} Bryan Ford and Sai Susarla, “CPU Inheritance Scheduling”. Proceedings of OSDI, October
1996.

{B10}P. Gai, L. Abeni, M. Giorgi, G. Buttazzo, "A New Kernel Approach for Modular Real-Time
Systems Development", IEEE Proceedings of the 13th Euromicro Conference on Real-Time
Systems, Delft, The Netherlands, June 2001.

{B11}OMG. Real-Time CORBA 2.0: Dynamic Scheduling, Joint Final Submission. OMG Docu-
ment orbos/2001-06-09, June 2001.

{B12}Yodaiken V., “An RT-Linux Manifesto”. Proceedings of the 5th Linux Expo, Raleigh, North
Carolina, USA, May 1999.

{B13}George M. Candea and Michael B. Jones, “Vassal: Loadable Scheduler Support for Multi-
Policy Scheduling”. Proceedings of the Second USENIX Windows NT Symposium, Seattle,
Washington, August 1998.

Page 48 24/7/02 Application Scheduling Interface

{B14}F. Mueller, V. Rustagi, and T.P. Baker. “MiThOS - A Real-Time Micro-Kernel Threads Op-
erating System”. Proceedings of the IEEE Real-Time Systems Symposium, December
1995.

{B15}C.L. Liu and J.W. Layland. “Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment”. Journal of the ACM, Vol. 20, No. 1, 1973, pp. 46-61.

