
IST-2001 34140

Final Interface Definition

Deliverable D-AF.2v2

Ian Broster

Alan Burns

Gerhard Fohler

Julio Medina

Michael Gonzalez Harbour

April 2004

IST-2001 34140 Deliverable D-AF.2v2

Contents

1 Introduction and Rationale 2

1.1 Application Requirements . 3

1.2 Flexibility . 3

2 The Application View of the Contract 5

2.1 Servers and Bandwidth . 5

2.2 Acceptance of Contracts . 6

3 Modular Contract Design 7

3.1 Contract Specification . 8

3.2 CORE Module Parameters . 8

3.3 HIERARCHICAL Module Parameters . 8

3.4 SYNCHRONIZATION Module Parameters 10

3.5 SPARE CAPACITY Module Parameters . 10

3.6 DYNAMIC RECLAIMING Module Parameters 11

3.7 RUN-TIME/IMPLEMENTATION Module Parameters 11

3.8 Portable Semantics . 11

4 Initialisation and Group Mode Changes 13

4.1 Initialisation and New Contracts . 13

4.2 Atomic Contract Groups . 14

5 Distribution 15

5.1 Notes on Distributed Transactions . 15

1

IST-2001 34140 Deliverable D-AF.2v2

Section 1

Introduction and Rationale

The purpose of this document is to present the final contract-based interface to the FIRST
scheduling framework (FSF). It briefly reviews the types of application requirements that are
supported and presents the contract itself. This is a second phase document, extending and
drawing from D-AF.1-v1, D-AF.1-v2 and D-AF.2-v1 and other FIRST deliverables.

The motivations for a contract-based approach are summarised as follows,

• isolated development of components;

• integration of legacy applications;

• portable applications;

• open systems;

• standard interface.

Key in FIRST is the concept of integration of complex applications with a variety of real-
time requirements. In particular, we consider cover a broad range of realistic application
requirements and real-time behaviour, including well-understood hard real-time behaviour as
well as less well defined concepts of soft requirements. It is noted that in many modern real-
time systems, only a small fraction of the system could be considered to have hard deadlines,
yet most of the rest of the system might have important timing or performance requirements.

Previous work presented in D-AF.1-v1, drawing from academia and industry, presented a
set of characteristics of modern and future real-time systems. The set of systems that we
consider real-time systems (and therefore within the scope of this framework) is very broad,
including systems with the most critical timing requirements and systems with vague quality
of service ideals. D-AF.1-v2 carefully defined this scope. Based on these characteristics, a list
of supported application requirements has been produced.

Research within FIRST and elsewhere indicates that a wide variety of requirements can be
supported by server technologies supporting a hierarchical scheduling structure. Interface to
the servers is provided by a contract—an agreement between application and scheduler about
the real-time behaviour of the application and the service provided by the scheduler. The
essence of the contract is a definition of the bandwidth that the application requires with the
CPU.

2

IST-2001 34140 Deliverable D-AF.2v2

1.1 Application Requirements

D-AF1v1 promoted the concept that application requirements for timing could be considered
in 5 classes:

Periodicity. How often some processing needs to be performed;

Resource usage. How much processing is required;

Performance and guarantees. Concerning measurement and verification of the perfor-
mance and quality of service of the processes;

Change management and maintenance. How changes in the real-time characteristics
are handled (both off-line and on-line), including composability of systems;

Dependability. Relating to how important it is for the above features, particularly perfor-
mance and guarantees, to be adhered to.

It is apparent that the first three of these (periodicity, resource usage, performance and
guarantees) are a generalisation of the well-established terms period (T), worst case execution
time (C) and deadline (D) used to describe simple periodic processes.

We also note that the periodic process model can usefully be generalised to a job model that is
representative of the structure of many components in real-time systems. That is, systems are
decomposed into ‘activities’ where each activity is a piece of functionality that is performed
repeatedly.

Thus, we may define an application as a set of repeating jobs that may be executed in logical
parallelism; the frequency, duration and other constraints of the jobs are described using the
scheme above.

This scheme must not be interpreted as another implementation of a periodic process model;
the motivation for the FIRST project is to be able to support applications that have consid-
erably more flexible timing requirements. There is no implication that a description of the
periodicity of a job is a single, constant value; the FIRST framework allows any given job
instance to have a different time between invocations. For example, an elastic period could be
used, where the actual inter-arrival time depends on available resources, or the inter-arrival
time could be chosen from a set of suitable values for which the application can operate
efficiently.

1.2 Flexibility

The ability support flexible application timing requirements is at the heart of the FSF. This
flexibility can include:

Ability to change. The timing behaviour of an application can change throughout the ex-
ecution of the software—mode changes, environmental factors and interactions with
other applications are some of the reasons why an application’s timing characteris-
tics may change. The FSF can support changes through a combination of contract

re-negotiation and dynamic reclaiming of resources.

3

IST-2001 34140 Deliverable D-AF.2v2

Support for unknown or partially known requirements. For many algorithms and soft-
ware, the the timing behaviour is unknown or partially known. For example: the exe-
cution time or worst case execution time (of a job) may not be computable offline, even
if either can be calculated, worst case execution time analysis always frequently returns
pessimistic results. Some algorithms (anytime algorithms, for example) can usefully
take as much CPU time as they are offered; the accuracy of calculation depends on
the time taken to compute it. The FSF can support unknown and partially unknown
timing requirements through flexible contract support, temporal isolation and efficient
resource reclaiming.

Support for use of spare resources. Applications can request to use unused CPU band-
width. This may be done either by contract re-negotiation (or static reclamation)—
where additional bandwidth is allocated to the application until it explicitly drops it, or
by dynamic reclamation—where any spare time that emerges at run-time can efficiently
be allocated to jobs that can use it.

Temporal partitioning. Support for temporal partitioning allows an application to rely on
the operating system to ensure that its behaviour cannot adversely affect the timing
of other applications. This is a very useful scheme for many soft applications or ap-
plications with unknown timing requirements. It allows the designer to focus on the
functional aspect of the behaviour, where appropriate, rather than having to guarantee
‘artificial’ timing constraints on an algorithm that does not naturally map to a real-time
system. Operating system functions are provided to ease integration.

4

IST-2001 34140 Deliverable D-AF.2v2

Section 2

The Application View of the
Contract

The nature of the contract process is that the application sends a request to the scheduler
for a contract. If the scheduler is able to support that contract, then it agrees the contract.
Once agreed, the contract is binding and the scheduler will continue to support the contract
until the application either deletes the contract or requests to renegotiate it.

2.1 Servers and Bandwidth

The fundamental part of the contract is that the application requests a minimum (and op-
tionally, a maximum) level of ‘service’ (CPU bandwidth) from the operating system. If this
request is agreed then it forms a contract between the application and the operating system.
The contract guarantees that the application will receive the minimum service. Further, if
there is additional spare resource available then the application may be allowed to use this
resource until it reaches the maximum requested.

The contract is implemented on an underlying server-based approach, where a server is a basic
budgeting resource. The server, i, has parameters Ci, Ti, Di which are the server-budget,
server-cycle (period) and server-deadline. These represent the basic contract. The semantics
are that at least Ci CPU time is available every Ti before Di time has elapsed.

Thus, the view of an application, running in a FIRST framework is that it has a proportion
of the CPU bandwidth, as defined by the server parameters, that it uses according to the
needs of its processes and the policy of its local scheduler.

Note that Ci, Ti and Di do not necessarily relate to the parameters of a periodic process—
mapping application requirements to these parameters is described elsewhere (in D-AF.1-v2,
D-SI.4-v1 and in future deliverables).

A server may be considered as a time-budgeting or accounting mechanism. In abstract, a
server is merely a small set of parameters and variables which record the requested and used
resources of the server. However, it is not necessary to adhere to this abstraction in an
implementation; in an efficient design, a server may also have a functional component. Each
server manages the budget for a scheduler, applications or processes.

5

IST-2001 34140 Deliverable D-AF.2v2

There are numerous types of possible servers, with different characteristics. Despite the
suitability of some of these, in FIRST, a particular type of server is promoted. The server
is described in D-SI.4-v1. This server may be considered a general abstraction of a number
of standard servers, but with some important differences. The resulting server is similar to a
constant bandwidth server (CBS) in its properties and behaviour.

2.2 Acceptance of Contracts

The contract can be negotiated (and re-negotiated) at run-time by the application. Ac-
ceptance of the requested contract is not guaranteed. However, for closed systems, off-line
analysis can be used to ensure all contracts can be honoured; for such systems, the acceptance
test may be disabled.

Once accepted, the operating system is bound to honour existing contracts. In the case of a
re-negotiation of a contract, if the new contract cannot be accepted, the application is still
guaranteed to receive the previously accepted contract.

The acceptance test is implementation defined. A utilisation based test provides a simple,
effective approach. An acceptance test base on response time analysis is also promoted.

6

IST-2001 34140 Deliverable D-AF.2v2

Section 3

Modular Contract Design

The contract with the scheduler has a large number of parameters, many of which are optional.
The FSF is structured as a number of modules in order to limit the complexity. Each module,
except the CORE module is optional; thus an implementation may elect to support only parts
of the complete framework. The modules are as follows.

Core The core of the framework must be provided in all implementations. The fundamental
interface requirements, from the perspective of the application are:

• contract support: to be able to access a minimum, guaranteed, periodic budget;

• contract re-negotiation: to be able to request additional resources on demand;

• acceptance testing: a contract may be refused;

• to be able to query the existing resource usage.

The core provides a basic interface that allows real-time applications to be scheduled.
A minimal system, for example a small embedded system, with only one or two appli-
cations may only need the core module.

Hierarchical scheduling This module provides a two layer scheduling architecture where
application specific, user-selectable schedulers can be linked with a service contract.
This module builds on the core module and provides a useful framework for integration
of legacy applications.

Synchronization The synchronization module extends the core contract interface to allow
applications to specify the critical sections between servers as part of the contracts.
The module provides support for enforcing this synchronisation in both the acceptance
testing and scheduling.

Spare Capacity Sharing This module allows any CPU bandwidth that is unrequested (not
asked for in the basic contract) to be allocated to applications that optionally request
it, above the guaranteed minimum amount. The “quality and importance” metrics are
added to the contract, as well as an indication of maximum useful bandwidth.

Dynamic Reclaiming The reclamation module allows the scheduler to dynamically, at run-
time, reclaim any budget that is unused in any servers, and distribute it to other servers.

7

IST-2001 34140 Deliverable D-AF.2v2

Run-time and implementational specific enhancements Any implementation specific
enhancements, (such as preemption levels) can be added in this generic module. This
allows some room for future expansion of the framework, to incorporate novel scheduling
requirements.

3.1 Contract Specification

The entire contract is given in the Table 3.1. The following sections describe the parameters
of the contract in more detail.

3.2 CORE Module Parameters

The CORE module provides the basic functionality required to implement an application on
FSF. The essence of the CORE is to be able to provide a minimum guaranteed service, based
on a contract, to each application.

The first three parameters Ci,min, Ti,max and Di allow the application to specify the minimum
CPU bandwidth that it requires to run correctly. The parameters reflect the server imple-
mentation of budget control. An accepted contract implies that the scheduler can guarantee
Ci,min units of CPU time every Ti,max before Di time has elapsed.

If Di is omitted, the deadline for providing Ci,min is considered to be equal to Ti,max. That
is, each job may finish up until the next begins—jobs may not overlap.

The workload parameter specifies the nature of the work that the application is expected
to do. A bounded workload means that each invocation of the server budget corresponds
to a new release of a job. This model of computation ties the job to the underlying server
mechanism, allowing finer control of the behaviour. At the end of each job, the application
should declare to the system that it has finished its execution.

An unbounded model relaxes the synchronisation between server and jobs, allowing a single
job to execute over a number of server cycles. In this case, the server acts as only a budgeting
resource, allowing an application to simply execute, using a minimum bandwidth. This is
very much like traditional UNIX scheduling, where the operating system has control of the
bandwidth used by the application, except that in FSF, the minimum bandwidth that the
application receives is guaranteed.

Deadline and Budget overruns can be detected (on bounded workloads) and signalled to the
application if desired, using POSIX signals or Ada exceptions.

3.3 HIERARCHICAL Module Parameters

The hierarchical module allows each server to support a different local scheduling policy using
a two-level hierarchy. The local scheduling policies that are supported are Earliest Deadline
First (EDF), Fixed Priority (FP, POSIX) and none (NONE). The NONE policy implies that
there is only one single thread on the server.

8

IST-2001 34140 Deliverable D-AF.2v2

CORE

Parameter Values Observation

Minimum Budget Ci,min mandatory
Maximum Period Ti,max mandatory
Deadline Di optional
Workload Bounded/Indeterminate default=indeterminate
Deadline Miss Notification none/signal default=none
Budget Overrun Notification none/signal default=none

HIERARCHICAL

Additional Parameter Values Observation

Scheduling Policy EDF/FP/NONE default=FP

SYNCHRONIZATION

Additional Parameter Values Observation

Critical Sections S = {(r0, o0), · · · , (rn, om)} optional
Provided by the Shared Objects C = {Cr0,o0

, · · · , Crn,om
} optional

Preemption level Pi optional

SPARE CAPACITY

Additional Parameter Values Observation

Useful Budget Ci,max mandatory
Useful Period Ti,min mandatory
Granularity Continuous/Discrete default=continuous
Utilisation set C = {(Ci,1, Ti,1), · · · , (Ci,n, Ti,n)} optional
Quality and Importance (Qi, Ii) mandatory
Signal contract changes S boolean; default=false

DYNAMIC RECLAIMING

Additional Parameter Values Observation

Useful Budget Ci,max mandatory
Useful Period Ti,min mandatory
Quality and Importance (Qi, Ii) optional

RUN-TIME/IMPLEMENTATION

Additional Parameter Values Observation

Alternative synchronization schemes optional

Table 3.1: Contract Parameters by Module

9

IST-2001 34140 Deliverable D-AF.2v2

3.4 SYNCHRONIZATION Module Parameters

The synchronisation module provides a robust mechanism for communication and synchro-
nization between threads running on different servers.

The mechanism is based on the notion of shared objects (Protected objects in Ada, similar to
Hoare’s Monitors in C) which have well-defined synchronization semantics.

Each shared object consists of data and an interface to that data presented as as a set of
operations. The operations are syntactically similar to procedure calls.

However, the semantics of the operations are such that mutual exclusion is ensured between
operations on the same shared object. It is implementation defined whether mutual exclusion
is provided by an actual lock, or by the scheduling policy itself using a ceiling priority protocol
or preemption levels.

Each operation has a stated worst case execution time associated with it, which is used to
determine the blocking time that waiting for this resource can impose. The specification for
each shared object (ri) includes for each operation (oj) the worst case execution time Cri,oj

.

Conversely, an application declares its intent to use a shared object using the interface in
the synchronization module: for each shared object it uses (r) the application states which
operations (o) it may to use.

The schedulability analysis tool will calculate blocking times appropriately. Blocking times
are dependent on the implementation of the shared object locking. For example, if immediate
priority ceiling or preemption levels are used then this value may be the worst case execution
time of the largest critical section.

Nested calls between shared objects are not permitted.

3.5 SPARE CAPACITY Module Parameters

The SPARE CAPACITY module extends the core module by allowing an application to
receive a higher bandwidth than it minimally needs. This is done by additionally specifying
a maximum useful budget, Ci,max, and a minimum useful period, Ti,min.

When a contract negotiation takes place in the system, the generated contract for the server
can be between the minimum and maximum useful values (if it is accepted). This contract
provides the minimum guaranteed bandwidth that the server will expect on future invocations.

Restrictions can be placed on the resulting contract. If the application can accept any contract
parameters between the minimum and maximum values then this contract request is declared
Continuous.

Otherwise, the contract request is declared Discrete and a Utilisation set is additionally given.
This is a set of pairs, (Ci, Ti), of useful values. The agreed contract (if accepted) will be one
pair from the set.

Contention for bandwidth from multiple applications is handled by each contract specifying
a quality an importance. These parameters specify the way that any spare bandwidth in the
system is shared. They are treated as follows.

10

IST-2001 34140 Deliverable D-AF.2v2

Importance is a value from the set {1, · · · 5} where 5 is the most important. A contract
that is of higher importance than another will be allocated bandwidth in preference to the
lower importance contract. That is, a more important contract can be allocated all available
resources if requested.

Importance levels form groups within which the quality parameter shares resources fairly
between contracts of equal importance. Quality is an integer value which represents the
amount of spare bandwidth to be allocated within an importance level.

It is implicit that applications are cooperative, rather than competing for spare bandwidth.
If for example three applications should receive an equal share of spare bandwidth then they
should set equal values for quality. If an application wishes to request 3/4 of the real total
spare capicity, it should request 3 times1 the existing quality total (which may be read by
any application).

If at any time, the system wishes to change a contract that previously was negotiated to be
higher than the original minimum service specified in the CORE module, then the application
can refuse this request if it specified the Signal contract changes boolean parameter.

3.6 DYNAMIC RECLAIMING Module Parameters

If a particular server has unused bandwidth at either the end of the server-cycle or when the
application running on the server indicates that it does not require any further bandwidth
from the server in this server-cycle then this bandwidth can be used ‘reclaimed’.

This spare bandwidth is allocated directly to servers that can accept it (up to their maximum
useful service, (Ci,max, Ti,min).

The quality and importance parameters may be used for this, however an implementation
is not required to do so. It is implementation defined what scheme is used to provide this
service. Capacity Sharing is one useful way; a new scheme called Rewriting History under
development in FIRST may also be used.

3.7 RUN-TIME/IMPLEMENTATION Module Parameters

An implementation is free to specify further parameters to the contract as required. One useful
mechanism that can be identified is parameters for alternative synchronisation schemes.

3.8 Portable Semantics

FSF presents an application interface that promotes portability (an application should be
able to run on any FSF implementation); however the modular approach, where modules are
optional and implementation dependent can cause conflicts where an application depends on
a module that is not implemented.

1Since it wishes to have 3/4 of the total, the existing appliactions must have 1/4; therefore it requires 3

times what they aready have.

11

IST-2001 34140 Deliverable D-AF.2v2

The behaviour of the system in the case that an application attempts to use an unimplemented
module is defined as follows.

Runtime errors and warnings are issued using signals in the C interface and exceptions in
the Ada interface. Pre-runtime errors and warnings are issued by the compiler tools or
implementation defined tools as appropriate.

The CORE module is always present; omission of this module is not possible.

If the SYNCHRONIZATION module is not present in an implementation, and an application
requires synchronised communication then this is a program error (permanent failure). The
error can be detected pre-runtime (in likely implementations: during linking).

If the HIERARCHICAL module is not present in an implementation, and an application
requires a local scheduling policy, then this is a program error (permanent failure). The error
is detected at runtime. The exception to this is if the application requests policy none (i.e.
there is only one process in the application); this does not an error condition.

If the SPARE CAPACITY module is not present in an implementation, and an application
requests parameters provided by the SPARE CAPACITY module, this is not an error. The
program should continue to run with the minimum budget as defined by the CORE module.
However, a runtime or pre-runtime warning should be issued.

If the DYNAMIC RECLAIMING module is not present in an implementation, and an appli-
cation requests parameters provided by the DYNAMIC RECLAIMING module, this is not
an error. The program should continue to run with the budget as defined by the CORE (and
optionally SPARE CAPACITY) module(s). However, a runtime or pre-runtime warning may
be issued.

If an application attempts to use parameters from the RUN-TIME/IMPLEMENTATION
module, the behaviour is implementation defined. Usually, this should be a pre-runtime
error.

12

IST-2001 34140 Deliverable D-AF.2v2

Section 4

Initialisation and Group Mode
Changes

This section describes initialisation, arranging first contracts and how contracts can be con-
sidered as an atomic group.

4.1 Initialisation and New Contracts

Initialisation of an application in FIRST requires special consideration. The FSF supports
dynamic and open systems, where applications may join at any time. It is apparent that
a joining application should not affect existing running applications in any way that would
prevent them from receiving the service as defined in existing contracts. Thus, when a contract
negotiation is done for a new application, some time (a budget) is required in order to actually
perform the negotiation, including acceptance tests.

The initialisation process is as follows.

• At boot-up, before the FSF scheduling architecture is running, the main ‘system’ pro-
gram (here called main) initialises hardware and any initialisation required for FSF.
Note that FSF scheduling is still not running.

• The main program requests a contract for each application that is to be running in
the system when the system starts. The main program may also request a contract
(budget) for itself.

• When all contract negotiations are complete, the main program signals the FSF sched-
uler to begin. The main program may then exit.

If the main program created a contract for itself then a new application may use the time
assigned to that budget in order to negotiate a new contract. Therefore, the ‘main’ contract
parameters determine the responsiveness and ability of the system to accept contract requests.

If the main program did not create a contract for itself, then the system is closed, no new
applications may ask for a contract, except when they are started by another application and
that original application negotiates the contract for the new application.

13

IST-2001 34140 Deliverable D-AF.2v2

4.2 Atomic Contract Groups

Where an application is split over a number of different servers (hence contracts), it is impor-
tant that either all of the contracts are accepted, or none are accepted—the situation where
an application receives only some of its contracts should not occur.

The FIRST framework allows a set of contracts to be considered in a group. The whole
group is negotiated as an atomic contract in one operation. The overall structure of a group
negotiation, as viewed from the initialisation code of an application, is:

contract_begin_new_group(g);

contract_add_to_group(g, contract);

contract_add_to_group(g, contract);

...

contract_ok = contract_negotiate_group(g);

if (contract_ok) {

..

}

The application then has the opportunity to consider alternative contracts for acceptance.

The concept of atomic contracts extends in a distributed environment to the negotiation of
contracts for the utilization of several processing resources (processors and networks) in just
one negotiation. Thus complete transactions can be accommodated in the system or rejected
as a whole.

14

IST-2001 34140 Deliverable D-AF.2v2

Section 5

Distribution

An FSF contract may also be applied to a network to ‘reserve’ bandwidth on the network
in a similar way to arranging a contract for CPU bandwidth. Not all of the contract is
relevant for networks; only the CORE and SPARE CAPACITY modules may be provided in
an implementation.

The network contract is identical to the CPU contract, except that the units of the parameters
are given in bytes rather than time units.

The the network protocol is not restricted within FIRST, many network protocols may be
used, for example ethernet and CAN. Implementations for both have been produced.

5.1 Notes on Distributed Transactions

An important consideration is a distributed transaction, where, for example, a process on one
CPU (with its contract) sends data over the network (with another contract) to a process
on another CPU (which has another contract). It is clear that the three (or more) contracts
must all be compatible with each other, i.e. they all operate in the same mode and with the
same period.

The contract negotiation for the contracts in a transaction therefore places requirements on
the acceptance of a contracts, in a similar way to the atomic group of contacts (Section 4.2).
Although FIRST does not directly consider the implementation of such a scheme, it is im-
portant that FIRST does support a middleware implementation.

The mechanism for this will be defined in a phase 3 document.

15

