
IST-2001 34140

Programming Language Interfaces

Deliverable WP2-SI5-V3

Ian Broster, Alan Burns, Michael Gonzalez Harbour and Julio Medina

3 March 2005

IST-2001 34140 Deliverable WP2-SI5-V3

Contents

1 Introduction 2

2 FIRST interface to Existing Ada 2

2.1 Ada API . 2
2.2 Usage Scheme . 2
2.3 Implementation Advice . 4
2.4 Evaluation . 5

3 Improving the Provisions of Ada 5

4 Conclusions 7

A A first draft of the Service Contract API 9

B Appendix B - Ada API 14

B.1 FSF Core Module . 14
B.2 FSF Spare Capacity Module . 35
B.3 FSF Hierarchical Scheduling Module 38
B.4 FSF Shared Objects Module . 41
B.5 FSF Implementation Defined Module 43
B.6 FSF Distributed Module . 45
B.7 FSF Distributed Spare Capacity 50

C Private Part Reference 53

C.1 FSF private part . 53
C.2 FSF.Distributed private part . 58

1

IST-2001 34140 Deliverable WP2-SI5-V3

1 Introduction

This deliverable concerns the Ada language interface to the computation model
defined for FIRST. There are two aspects to defining an appropriate interface
for FIRST:

1. how to incorporate the required functionality into the existing definition
of Ada;

2. how to extend the provision of Ada so that it can more easily accommodate
the needs of FIRST and similar approaches to flexible scheduling.

These two quite distinct activities are discussed separately in Sections 2 and 3
of this report.

2 FIRST interface to Existing Ada

Ada 95 (the current version of the Ada standard) gives no support for servers
or application schedulers. Therefore an appropriate way to provide access to
these facilities is required. The FSF API for Ada is similar to the C version
and many of the functions and subprograms are have direct equivalents in the
C interface. In this API, no pragmas are defined.

The API has been derived using the high-level requirements stated earlier
in the project. For completeness the requirements for this API (as described in
deliverable D-SI.1v2) are given in Appendix A.

2.1 Ada API

The final version of an Ada API has been developed following feedback from
the previous iteration. The complete API is included in Appendix B of this
deliverable in the form of an Ada package specification. It may be beneficial to
read this specification in conjunction with the motivations for the C API, which
is described in other FIRST deliverables D-OS.1v2 and D-OS.2v2.

The final version of the API resolves the remaining issues discussed in pre-
vious versions. In particular, the requirement for a budget during initialisation,
background scheduling and service thread issues are resolved.

The key change to this version of the API is the introduction of modules.
The CORE module interface (which is compulsory) is contained in the package
‘fsf’. Other modules are implemented as child packages of fsf: fsf.hierarchical,
fsf.shared objects, fsf.spare capacity, fsf.implementation specific, fsf.distributed
and fsf.distributed.spare capacity.

2.2 Usage Scheme

In this section an outline of usage examples are presented, to illustrate the
method of integration of the Ada API in the different contexts considered in
FIRST.

2

IST-2001 34140 Deliverable WP2-SI5-V3

Initialisation. There are two stages to initialisation. Firstly, the FSF itself
must be initialised. This may well be done as part of the elaboration sequence
as defined by the binder, or from the main program. Initialisation of FSF is
achieved by calling the subprogram FSF.Init. After this, the FSF scheduling
framework is active and the environment task will be running in background
scheduling mode.

The second stage is the negotiation of the main contracts in the system. Two
approaches for are considered, although an implementation need not necessarily
support both ways. Firstly, a centralised approach is possible, where the main
program negotiates each contract, binds processes to servers then blocks. This is
ideal for closed systems, where there is no need for further contract negotiations.

The alternative approach is for the main program to leave contract negoti-
ations to the individual processes. To ensure that this completes adaquately,
the main process (or during elaboration) should set a contract for the service
thread using Set Service task Data. By default, the service thread executes in
the background scheduling policy, which may be sufficient. However, a normal
contract can be negotiated for the service task. The main program creates any
processes and blocks. Each process then individually requests its own contract,
which is negotiated using the budget of the special service thread. The negotia-
tions are performed using the budget of the service thread, or in the background
if the service thread finishes its budget during a negotiation.

Bounded workload. This kind of applications are characterised by being
designed with conservative WCET, and bounded periods. Consider the follow-
ing situations in which bounded workload servers are used.

Independent periodic tasks. Each task can be fit in an ad-hoc prepared
server. If no useful usage of extra capacity can be done by these tasks, minimum
and maximum values for budgets and periods can be made the same, which is
done by simply not setting the reclamation parameters. Each job starts after
returning from a call to the Schedule Timed Job procedure, the next time for
activation is calculated as the last requested activation time plus the period
authorised to the server, which is an output value of the same procedure.

Independent interrupt triggered tasks. When tasks are not strictly
periodic but driven by generic external interrupts instead, but the minimum
inter-arrival period and maximum per job computation time are known, the
same model as with periodic tasks described above can be used. The basic
difference is that at the beginning of each server’s activation, just after returning
from the Schedule Timed Job procedure, the job should block on the protected
object corresponding to the expected external interrupt.

Event dispatcher With external interrupts, timing, particular software
detected conditions or in general whichever event detection mechanism is cen-
tralized in a particular task, this task will act as a generic event dispatcher. In
this case this task should be characterised and bound to a certain higher pri-
ority server. The tasks that are to be launched in response to every particular
kind of event are in different servers and the budgets and periods for them are
particularly designed. The mechanism used for the activation of these servers is
the signalling of synchronization objects. In this case the activated tasks must

3

IST-2001 34140 Deliverable WP2-SI5-V3

use the Schedule Triggered Job to wait for signalling and return the capacity
not used in each job.

Unbounded workload. The unbounded workload applications do not usu-
ally have a clear minimum inter-arrival period though a certain number is as-
signed for the allocation of resources. Deadlines are not expected to be hard
but mostly met. In this case the unbounded workload servers model is used.
Basically it behaves like a sporadic server with the possible extension of budgets
and/or reduction of periods according to the spare capacity sharing algorithm
and the online unused reclaimed capacity returned by other servers in the sys-
tem. No capacity is returned explicitly by these servers, since no job model
is assigned. Tasks in this kind of server execute as much budget as they have
according to the server rules imposed by the underlying scheduling mechanism.
If a task blocks long enough, the capacity not used can be reclaimed in an
automatic way by the system.

Enhanced background. Besides the usage of zero minimum budget and
the quality and importance parameters for sharing spare capacity, some con-
crete possibilities for the accommodation of non real-time or relaxed constraints
applications are:

Any-time algorithms. In this case bounded workload servers with contin-
uous utilization granularity should be used. If the timing granularity is coarse
enough, each processing cycle can be started by calculating or asking for the
remaining budget in the present job (Get Available Capacity), if it is clearly
not enough for a new cycle, the job can be ended and the remaining capacity
returned (using Schedule Timed Job or Schedule Triggered Job).

N-version algorithms. Contracts for this kind of algorithms should ask
for a range of budgets/periods combinations, probably with discrete utilization
granularity. It is also advisable to use bounded workload servers, so that in each
job the available capacity is used to select the adequate version of the algorithm.

Regular background. A round robin background scheduling scheme is
available. To access this, a contract must be created with budget and period
both set to 0 (contract negotiation may fail if there are shared objects). This
server provides background scheduling; tasks requiring background scheduling
may be bound to this server as required.

2.3 Implementation Advice

The FSF API presented here clearly contains significant features which are not
trivial to implement. The existing implementation on MaRTE, which uses the
GNAT compiler, provides a very POSIX-oriented interface to the underlying
scheduling. Other styles of implementation are possible. Indeed, the ShARK
reference implementation, which only supports the C API, uses a completely
different underlying scheduling architecture.

The key features of FSF, which need to be implemented include: hierarchical
scheduling, budget control and servers, synchronisation and application defined
scheduling.

4

IST-2001 34140 Deliverable WP2-SI5-V3

At the heart of the MaRTE OS reference implementation is a fixed priority
scheduler. The preemption levels given in the contracts are translated into
priorities by an implementation defined private function:

function Priority Map (Plevel : in Preemption Level)
return System.Priority;

Further discussion of this and application based scheduling framework for Ada
can be found in the 2004 Ada Europe paper, Implementing an Application-

Defined Scheduling Framework for Ada Tasking [1] which is an output of the
FIRST project. The operating systems and their interface to FSF will be fully
described in separate documents OS1v3 and OS2v3.

Finally, as a reference for implementation, the private parts of the package
specifications for fsf and fsf.distributed are presented in Appendix C.

2.4 Evaluation

Regarding quantitative evaluation, experimentation has been undertaken in
terms of measuring overheads. The full report is presented in SI2v3, Sched-
uler Evaluation Report, where accurate measurements for API calls, context
switches etc in MaRTE and SHaRK are given.

The initial results indicate that the FSF API behaves favourably. The times
are increased slightly compared to (say) a native fixed priority scheduler because
of the overhead of the advanced scheduling (servers, budgets, etc.), however the
increase is slight.

Regarding usage evaluation, both case studies have used the Ada API to FSF
and found it good to use. The number of lines of code required to use FSF was
low, compared to the size of the application, and little effort was required to be
able to use legacy applications designed for other operating systems. Feedback
from the case studies was essential for the design of the final API. In particular, it
was noted that the use of synchronisation objects and critical sections simplified
the structure systems, making their design ’cleaner’.

3 Improving the Provisions of Ada

One of FIRST’s major objectives is to attempt to influence the standards that
are relevant to the support of flexible real-time systems. Within the context of
this deliverable it is the definition of the Ada standard that is of concern. As
an ISO standard, Ada’s definition is reviewed every ten years. Current activity
is concerned with possible amendments to the language that will take effect in
2005/6. These amendments are potentially wide ranging and include aspects
of the type model and the introduction of interfaces. Members of the FIRST
consortium have been concerned with the real-time annex and have focused on
its scheduling provisions - with the objective of broadening its provisions. This
work has produced:

5

IST-2001 34140 Deliverable WP2-SI5-V3

• A collection of AIs (Ada Issues) that lay the foundation to the necessary
amendments within the scope of scheduling. AIs are the mechanism by
which language changes (amendments) are considered by the ISO author-
ity responsible for Ada (this group is known as the ARG, which is itself
a subgroup of ISO committee WG9). The AIs developed so far are as
follows - the latest version of all of them are included are available on the
ARG web site.

– rewording of section D2.2 of the Ada Reference Manual (ARM) to
allow extra scheduling to be added.

– inclusion of non-preemption dispatching

– dynamic priority ceilings for protected objects

– execution-time budget control for individual tasks

– group budget control for groups of tasks

– timing events that allow code to be executed at defined times without
the need to use a task with a delay statement

– support for EDF dispatching and preemption-level locking

– support for application-level scheduling - as used in FIRST.

All of these proposals are making good progress with the exception of the
application-level scheduling AI that has been deemed beyond the scope of
the 2005 amendment.

• Three papers for the International Real-Time Ada Workshop that took
place in September 2003, and which are now been published in Volume
XXIII (4) December 2003 of Ada Letters:

– Task Attribute-Based Scheduling - Extending Ada’s Support for Schedul-

ing [5]

– Application-Defined Scheduling in Ada [7].

– Managing Multiple Execution-Time Timers from a Single Task [6].

• A paper, presented at the 2003 Ada Europe Conference, arguing for the
provisions of Ada to be expanded[3].

• A paper on EDF scheduling for 2004 Ada Europe Conference entitled
Supporting Deadlines and EDF Scheduling in Ada[4].

• A paper on application level scheduling, referenced earlier, also for the
2004 Ada Europe Conference[1].

• A paper on the integration of the application-defined scheduling proposal
with the evolution of the real-time AIs on EDF scheduling and execu-
tion time budgets, accepted for its presentation at the Ada-Europe 2005
conference[2].

6

IST-2001 34140 Deliverable WP2-SI5-V3

Note that none of the AIs or the proposals in the papers go far enough in
terms of giving direct support for servers. However the use of Timing Events
and budget control does allow fixed priority servers to be programmed as part
of the application. This has the advantage of allowing the particular semantics
required by the application to be produced (rather than relying only of the pro-
visions defined by the language). Although dynamic schemes such as EDF can
be programmed using dynamic priorities a more effective and efficient scheme
will come from direct support for EDF (as defined in the AI). The current pro-
posal has the advantage that it will allow EDF and fixed priority (and other
schemes) to coexist with the same application - this is clearly desirable for the
form of flexibility envisaged and championed by FIRST.

The IRTAW meeting in September 2003 laid the foundation for much of the
work on the AIs identified above. Member of FIRST participated fully in this
workshop.

4 Conclusions

Much progress has been made in opening up the definition of Ada so that
more flexible scheduling can be supported. However the extent to which these
possibilities find their way into the language definition is as yet not decided. The
development of an API for Ada has nevertheless illustrated the means by which
this language can be used for programming flexible systems if the underlying
run-time provides the necessary functionality.

References

[1] M. Aldea, J. Miranda, and M. González Harbour. Implementing an
application-defined scheduling framework for Ada tasking. In Reliable Soft-

ware Technologies, Proceedings of the Ada Europe Conference. Lecture Notes
on Computer Science, Springer Verlag, (to appear), 2004.

[2] M. Aldea andJ. Miranda and M. González Harbour. Integrating application-
defined scheduling with the new dispatching policies for ada tasks. In Pro-

ceedings of the International Conference on reliable Software Technology,

Ada-Europe,, York, UK, June 2005. ACM.

[3] A. Burns, M. González Harbour, and A.J. Wellings. A round robin schedul-
ing policy for Ada. In Reliable Software Technologies, Proceedings of the

Ada Europe Conference, volume LNCS 2655, pages 334–343. Lecture Notes
on Computer Science, Springer Verlag, 2003.

[4] A. Burns, M. González Harbour, and A.J. Wellings. Supporting deadlines
and EDF scheduling in Ada. In Reliable Software Technologies, Proceedings

of the Ada Europe Conference. Lecture Notes on Computer Science, Springer
Verlag, (to appear), 2004.

7

IST-2001 34140 Deliverable WP2-SI5-V3

[5] A. Burns and A.J. Wellings. Task attribute-based scheduling - extending
Ada’s support for scheduling. In T. Vardenega, editor, Proceedings of the

12th International Real-Time Ada Workshop, volume XXIII, pages 36–41.
ACM Ada Letters, 2003.

[6] M. González Harbour and M.A. Rivas. Managing multiple execution-time
timers form a single task. In T. Vardenega, editor, Proceedings of the 12th

International Real-Time Ada Workshop, volume XXIII, pages 28–31. ACM
Ada Letters, 2003.

[7] M.A. Rivas and M. González Harbour. Application-defined scheduling in
Ada. In T. Vardenega, editor, Proceedings of the 12th International Real-

Time Ada Workshop, volume XXIII, pages 42–51. ACM Ada Letters, 2003.

8

IST-2001 34140 Deliverable WP2-SI5-V3

A A first draft of the Service Contract API

The API between the application or upper-level scheduler and the underlying
scheduler will include at least the operations listed below. The contract param-
eters are specified as an opaque or private type, depending on the programming
language facilities. Values of this type are only set through the interfaces defined
by the following abstract operations, or additional ones that may be defined in
the future:

• Initialize

Input Data none

Output Data Contract parameters object

Description The operation initializes a contract parameters object set-
ting it to the default values, and returns this object

• Set Basic Parameters

Input Data Budget, Period, Workload (Bounded or Indeterminate), Con-
tract parameters object

Output Data Updated contract parameters object

Description The operation updates the specified contract parameters
object by setting its budget, period, and workload to the specified
input parameters. (Note: the workload is a basic parameter because
bounded tasks are triggered by the scheduler (see the Timed Schedule
Next Job operation, later), while indeterminate tasks are not; there-
fore, their programming model is quite different).

• Set Timing Requirements

Input Data D=T (boolean), Deadline (must be null if D=T true), Bud-
get Overrun Notification (may be null), Deadline Miss Notification
(may be null), Contract parameters object

Output Data Updated contract parameters object

Description The operation updates the specified contract parameters
object by setting its D=T and deadline parameters to the specified
input parameters.

• Set Reclamation Parameters

Input Data Granularity (continuous or discrete), Utilization set (null if
continuous), Quality and Importance, Contract parameters object

Output Data Updated contract parameters object

Description The operation updates the specified contract parameters
object by setting its granularity, utilization set, quality, and impor-
tance to the specified input parameters.

9

IST-2001 34140 Deliverable WP2-SI5-V3

• Set Synchronization Parameters

Input Data Preemption Level, Critical sections, Contract parameters
object

Output Data Updated contract parameters object

Description The operation updates the specified contract parameters
object by setting its preemption level and critical sections to the
specified input parameters.

An abstract synchronization object is defined by the application. This object
can be used by an application to wait for an event to arrive by invoking the
Schedule Triggered Job operation. It can also be used to signal the event either
causing a waiting server to wake up, or the event to be queued if no server is
waiting for it. It has the following operations:

• Init

Input Data None

Output Data Initialized synchronization object

Description This operation initializes a synchronization object managed
by the scheduler.

• Signal

Input Data Synchronization object

Output Data None

Description If one or more servers are waiting upon the specified syn-
chronization object one of them is awakened; if not, the event is
queued at the synchronization object.

• Negotiate Contract

Input data Contract parameters

Output data Accepted (boolean), Server Id (Number)

Description The operation negotiates a contract for a new server. If the
on-line admission test is enabled it determines whether the contract
can be admitted or not based on the current contracts established in
the system. Then it creates the server and recalculates all necessary
parameters for the contracts already present in the system. This is a
potentially blocking operation; it returns when the system has either
rejected the contract, or admitted it and made it effective.

• Cancel Contract

Input data Server Id

Output data None

10

IST-2001 34140 Deliverable WP2-SI5-V3

Description The operation eliminates the specified server and recalcu-
lates all necessary parameters for the contracts remaining in the sys-
tem. This is a potentially blocking operation; it returns when the
system has made the changes effective.

• Renegotiate Contract

Input data Server Id, New Contract Parameters

Output data Accepted (boolean)

Description The operation renegotiates a contract for an existing server.
If the on-line admission test is enabled it determines whether the
contract can be admitted or not based on the current contracts es-
tablished in the system. If it cannot be admitted, the old contract
remains in effect. If it can be admitted, it recalculates all necessary
parameters for the contracts already present in the system. This is a
potentially blocking operation; it returns when the system has either
rejected the new contract, or admitted it and made it effective.

• Request Contract Renegotiation

Input data Server Id, New Contract Parameters, Notification (None, or
signal number)

Output data None

Description The operation enqueues a renegotiate operation for an ex-
isting server, and returns immediately. The renegotiate operation is
performed asynchronously, as soon as it is practical; meanwhile the
system operation will continue normally. When the renegotiation is
made, if the on-line admission test is enabled it determines whether
the contract can be admitted or not based on the current contracts
established in the system. If it cannot be admitted, the old contract
remains in effect. If it can be admitted, it recalculates all necessary
parameters for the contracts already present in the system. When the
operation is completed, notification is made to the caller, if requested,
via a signal. The status of the operation (in progress, admitted,
rejected) can be checked with the Renegotiation Request Status

operation.

• Change Quality And Importance

Input data New Quality, New Importance, Server Id

Output data None

Description The operation enqueues a request to change the quality and
importance parameters of the specified server, and returns immedi-
ately. The change operation is performed as soon as it is practical;
meanwhile the system operation will continue normally.

11

IST-2001 34140 Deliverable WP2-SI5-V3

• Timed Schedule Next Job

Input data Server Id, Absolute time

Output data Current Budget, Current Period, Deadline Missed (boolean),
Budget Overran (boolean)

Description This operation is invoked for bounded workload servers to
indicate that a job has been completed (and that the scheduler may
reassign the unused capacity of the current job to other servers), and
also when the first job requires to be scheduled. The system will
activate the job at the specified absolute time, and will then use the
scheduling rules to determine when the job can run, at which time
the call returns. Upon return, the system reports the current period
and budget for the current job, whether the deadline of the previous
job was missed or not, and whether the budget of the previous job
was overrun or not.

• Event Triggered Schedule Next Job

Input data Server Id, Synchronization object,

Output data Current Budget, Current Period, Deadline Missed (boolean),
Budget Overran (boolean),

Description This operation is invoked for bounded workload servers to
indicate that a job has been completed (and that the scheduler may
reassign the unused capacity of the current job to other servers),
and also when the first job requires to be scheduled. If the specified
synchronization object has events queued, one of them is dequeued;
otherwise the server will wait upon the specified synchronization ob-
ject until it is signalled. Then, the system will use the scheduling
rules to determine when the job can run and the call will return at
that time. Upon return, the system reports the current period and
budget for the current job, whether the deadline of the previous job
was missed or not, and whether the budget of the previous job was
overrun or not.

Overran (boolean)

• Available Capacity

Input data Server Id

Output data Capacity, in percentage of utilization

Description This operation returns the current spare capacity (in per-
centage of processor or network utilization), currently assigned to the
importance level of the specified server.

• Total Quality

Input data Server Id

12

IST-2001 34140 Deliverable WP2-SI5-V3

Output data Quality

Description This operation returns the sum of the quality parameters
for all servers in the system of importance level equal to that of the
specified server.

• Renegotiation Request Status

Input data Server Id

Output data In-progress, rejected, admitted

Description The operation reports on the status of the last renegotiation
operation enqueued for the specified server. It is callable even after
notification of the completion of such operation, if requested.

• Is Admission Test Enabled

Input data None

Output data Test Enabled Status (boolean)

Description Returns true if the system is configured with the on-line
admission test enabled, and false otherwise.

Operations to negotiate, cancel, and renegotiate multiple-server contracts
will be available in the future (next phase of the project). For now, a multiple-
server contract can be negotiated as a sequence of single-server contracts.

13

IST-2001 34140 Deliverable WP2-SI5-V3

B Appendix B - Ada API

The following API has been developed within FIRST for the Ada programming
language.

B.1 FSF Core Module

−−===
−− FFFFFFIII RRRRR SSTTTTTTT
−− FF IIR RR SS
−− FF IR SS
−− FFFFFF RRRR SSSSST
−− FF FI RRR SS
−− FF I I RRR SS
−− FF II I I IR RS
−−===
−− Basic FSF(FIRST Scheduling Framework) contract management

with Ada.Real Time;
with Ada.Task Identification;
with Ada.Unchecked Conversion;
with System;
with POSIX Signals;

package Fsf is

−− BASIC TYPES

−− Types for the core module

type Workload is (Bounded, Indeterminate, Overhead);

−− Some constants used as default values

Null Deadline : constant Ada.Real Time.Time Span

:= Ada.Real Time.Time Span Zero;

Null Signal : constant POSIX Signals.Signal

:= POSIX Signals.Signal Null;

Null Signal Data : constant POSIX Signals.Signal Data;

−− Types for the spare capacity module

type Granularity is (Continuous, Discrete);

−− Utilizations

type Utilization Value is record

14

IST-2001 34140 Deliverable WP2-SI5-V3

C : Ada.Real Time.Time Span;
T : Ada.Real Time.Time Span;

end record;

type Utilization Set is private;

Null Utilization Set : constant Utilization Set;

Max N Utilization Values : constant Natural := −− Not specified by the FSF.

type U Index is range 0 .. Max N Utilization Values;

subtype Positive U Index is U Index range 1 .. U Index’Last;

procedure Add

(Set : in out Utilization Set;
Value : in Utilization Value);

function Size

(Set : Utilization Set)
return U Index;

function Element

(Set : Utilization Set;
Index : Positive U Index)
return Utilization Value;

−− Quality and inmportance

Max N Importance Levels : constant Positive := −− Not specified by the FSF.

subtype Importance is Positive range 1 .. Max N Importance Levels;

subtype Quality is Natural;

−− Types for the implementation specific module −−

UINT32 MAX : constant := 2∗∗32−1;
type Preemption Level is range 1 .. UINT32 MAX;

−− Types for the shared objects module

−− Shared object identifier
Max shared obj id size : constant Natural := −− Not specified by the FSF.
type Shared obj id is new String (1 .. Max shared obj id size);

−− Shared object handle (opaque type)
type shared obj handle is private;

−− Critical sections

15

IST-2001 34140 Deliverable WP2-SI5-V3

type Critical Section Data is record

wcet : Ada.Real Time.Time Span;
obj handle : shared obj handle;

end record;

type Critical Sections is private;

Null Critical Sections : constant Critical Sections;

Max N Critical Sections : constant Natural := −− Not specified by the FSF.

type CS Index is range 0 .. Max N Critical Sections;

subtype Positive CS Index is CS Index range 1 .. CS Index’Last;

procedure Add

(Set : in out Critical Sections;
Value : in Critical Section Data);

function Size

(Set : Critical Sections)
return CS Index;

function Element

(Set : Critical Sections;
Index : Positive CS Index)
return Critical Section Data;

−− Types for the hierarchical module

−− Scheduling policies
type Sched Policy is (FP, EDF, TABLE DRIVEN, RR, NONE);

−− Scheduling parameters for the table−driven policy
−− list of target windows

type Target Window Data is record

the start : Ada.Real Time.Time Span;
the end : Ada.Real Time.Time Span;
comp time : Ada.Real Time.Time Span;

end record;

type table driven params is private;

Null table driven params : constant table driven params;

Max N Target Windows : constant Natural := −− Not specified by the FSF.

type TW Index is range 0 .. Max N Target Windows;

16

IST-2001 34140 Deliverable WP2-SI5-V3

subtype Positive TW Index is TW Index range 1 .. TW Index’Last;

procedure Add

(Set : in out table driven params;
Value : in Target Window Data);

function Size

(Set : table driven params)
return TW Index;

function Element

(Set : table driven params;
Index : Positive TW Index)
return Target Window Data;

−− Scheduling policy and parameters
type Sched Params (policy : Sched Policy) is record

case policy is

when FP => priority : Integer;
when EDF => deadline : Ada.Real Time.Time Span;
when TABLE DRIVEN => params : table driven params;
when RR | NONE => null;

end case;
end record;

−− Initialization information for a scheduling policy
type Sched Init Info (policy : Sched Policy) is record

case policy is

when FP | EDF | NONE => null;
when RR => slice duration : Ada.Real Time.Time Span;
when TABLE DRIVEN => schedule duration : Ada.Real Time.Time Span;

end case;
end record;

−− Types for the distributed services module

Max N Network Ids : constant := −− Not specified by the FSF.

type Network Id is new Natural range 0 .. Max N Network Ids;

Null Network Id : constant Network Id := 0; −− FSF NULL NETWORK ID ;

Default Network Id : constant Network Id := 1; −− FSF DEFAULT NETWORK ID ;

−− BASIC CONTRACT PARAMETERS
−−

17

IST-2001 34140 Deliverable WP2-SI5-V3

type Contract Parameters is private;

−− Initialize: The operation initializes and returns a contract
−− parameters object, setting it to the default values.
−− The default values are:
−− budget min and max are set to 0
−− period min and max are set to 0
−− the workload is unbounded (FSF INDETERMINATE)
−− the server deadline is equal to the period
−− the budget and deadline overrun are not notified
−− the granularity is set to ”continuous”
−− the quality and importance are set to 1
−− the scheduling policy is set to FSF NONE
−− the network id is set to null network id
−− the granted capacity flag is set to 0
function Initialize

return Contract Parameters;

−− Set Contract Basic Parameters: The operation updates the
−− specified contract parameters object by setting its budget,
−− period, and workload to the specified input parameters.
−− (Note: the workload is a basic parameter because bounded
−− tasks are triggered by the scheduler (see the
−− Schedule Next Timed Job operation, later), while
−− indeterminate tasks are not; therefore, their programming
−− model is quite different).
−− It may raise:
−− Bad argument: if bugets or periods are zero or not
−− consistent
procedure Set Contract Basic Parameters

(Contract : in out Contract Parameters;
Budget Min : in Ada.Real Time.Time Span;
Period Max : in Ada.Real Time.Time Span;
The Workload : in Workload := Indeterminate);

−− Get Contract Basic Parameters: This operation obtains
−− from the specified contract parameters object its
−− budget, period, and workload, and copies them to the
−− corresponding output parameters.
procedure Get Contract Basic Parameters

(Contract : in Contract Parameters;
Budget Min : out Ada.Real Time.Time Span;
Period Max : out Ada.Real Time.Time Span;
The Workload : out Workload);

−− Set Contract Timing Requirements: The operation updates the
−− specified contract parameters object. deadline must be
−− null deadline if D equals t is 1 , Budget overrun signal

18

IST-2001 34140 Deliverable WP2-SI5-V3

−− or Deadline miss signal may be null signal (no notification)
−− or any posix signal. budget overrun signal data and
−− deadline miss signal data are the values to be delivered
−− with the signal (this version does not support deadline
−− values larger than the efective period). −− It may raise:
−− Bad argument: if d equals t is 0 and (deadline is
−− null deadline or larger than the maximum period)
procedure Set Contract Timing Requirements

(Contract : in out Contract Parameters;
D Equals T : in Boolean := False;
Deadline : in Ada.Real Time.Time Span

:= Null Deadline;
Budget Overrun Signal : in POSIX Signals.Signal

:= Null Signal;
Budget Overrun Signal Data : in POSIX Signals.Signal Data

:= Null Signal Data;
Deadline Miss Signal : in POSIX Signals.Signal

:= Null Signal;
Deadline Miss Signal Data : in POSIX Signals.Signal Data

:= Null Signal Data);

−− Get Contract Timing Requirements: The operation obtains the
−− corresponding output parameters from the specified contract
−− parameters object. If d equals t is 1 , the deadline will
−− not be updated
procedure Get Contract Timing Requirements

(Contract : in Contract Parameters;
D Equals T : out Boolean;
Deadline : out Ada.Real Time.Time Span;
Budget Overrun Signal : out POSIX Signals.Signal;
Budget Overrun Signal Data : out POSIX Signals.Signal Data;
Deadline Miss Signal : out POSIX Signals.Signal;
Deadline Miss Signal Data : out POSIX Signals.Signal Data);

−−
−− SYNCHRONIZATION OBJECTS
−−

−− An abstract synchronization object is defined. This object
−− can be used by an application to wait for an event to arrive
−− by invoking the Schedule Next Event Triggered Job operation.
−− It can also be used to signal the event either causing a
−− waiting server to wake up, or the event to be queued if no
−− server is waiting for it. It is defined by the following
−− private type and has the following operations:

type Synch Obj Handle is private;

19

IST-2001 34140 Deliverable WP2-SI5-V3

−− Create Synch Obj: This operation initializes a
−− synchronization object managed by the scheduler.
−− It may raise:
−− Internal Error: if the operation fails because of
−− lack of memory
−− TOO MANY SYNCH OBJS : if the number of synchronization
−− objects in the system has already exceeded the maximum
−− NOT SCHEDULED CALLING TASK : if the calling task is
−− not scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not
−− running
function Create Synch Obj

return Synch Obj Handle;

−− Signal Synch Obj: If one or more servers are waiting upon
−− the specified synchronization object one of them is
−− awakened; if not, the event is queued at the synchronization
−− object.
−− It may raise:
−− INVALID SYNCH OBJ HANDLE if the handle is not valid
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not
−− running
−− TOO MANY EVENTS IN SYNCH OBJ : if the number of events
−− stored in the synchronization object reaches the maximum
−− defined in the configuration parameter header file

procedure Signal Synch Obj

(The Synch Obj Handle : in Synch Obj Handle);

−− Destroy Synch Obj: This operation destroys the
−− synchronization object (created by a previous call to
−− Create SynchObject) that is referenced by the
−− synchronization object variable, after calling this
−− operation, the variable can not be used until it is
−− initialized again by a call to Create SynchObject.
−− It may raise:
−− INVALID SYNCH OBJ HANDLE if the handle is not valid
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not
−− running
procedure Destroy Synch Obj

(The Synch Obj Handle : in Synch Obj Handle);

−−

20

IST-2001 34140 Deliverable WP2-SI5-V3

−− SCHEDULING BOUNDED WORKLOADS
−−

−− Schedule Timed Job: This operation is invoked by tasks
−− associated with bounded workload servers to indicate that
−− a job has been completed (and that the scheduler may
−− reassign the unused capacity of the current job to other
−− servers). It is also invoked when the first job of such
−− tasks has to be scheduled.
−−
−− As an effect, the system will make the current server’s ’
−− budget zero for the remainder of the server’s period, and ’
−− will not replenish the budget until the specified absolute
−− time. At that time, all pending budget replenishments (if
−− any) are made effective. Once the server has a positive
−− budget and the scheduler schedules the calling task
−− again, the call returns and at that time, the system
−− reports the current period and budget for the current job,
−− whether the deadline of the previous job was missed or
−− not, and whether the budget of the previous job was
−− overrun or not.
−−
−− In a system with hierarchical scheduling, since this call
−− makes the budget zero, the other tasks in the same server
−− are not run. As mentioned above, only when the call
−− finishes the budget may be replenished.
−− It may raise:
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not
−− running
−− INTERNAL ERROR : erroneous binding or malfunction of the FSF
−− main scheduler
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− NOT BOUND : if the calling task does not have a valid
−− server bound to it
−− SERVER WORKLOAD NOT COMPATIBLE: if the kind of workload of
−− the server is not FSF BOUNDED
procedure Schedule Timed Job

(Abs Time : in Ada.Real Time.Time;
Next Budget : out Ada.Real Time.Time Span;
Next Period : out Ada.Real Time.Time Span;
Was Deadline Missed : out Boolean;
Was Budget Overran : out Boolean);

−− Schedule Triggered Job: This operation is invoked by tasks
−− associated with bounded workload servers to indicate that
−− a job has been completed (and that the scheduler may
−− reassign the unused capacity of the current job to other
−− servers). It is also invoked when the first job of such

21

IST-2001 34140 Deliverable WP2-SI5-V3

−− tasks has to be scheduled. If the specified
−− synchronization object has events queued, one of them is
−− dequeued; otherwise the server will wait upon the
−− specified synchronization object, the server’s budget will ’
−− be made zero for the remainder of the server’s period, and ’
−− the implementation will not replenish the budget until the
−− specified synchronization object is signalled. At that
−− time, all pending budget replenishments (if any) are made
−− effective. Once the server has a positive budget and the
−− scheduler schedules the calling task again, the call
−− returns and at that time, the system reports the current
−− period and budget for the current job, whether the
−− deadline of the previous job was missed or not, and
−− whether the budget of the previous job was overrun or not.
−−
−− In a system with hierarchical scheduling, since this call
−− makes the budget zero, the other tasks in the same server
−− are not run. As mentioned above, only when the call
−− finishes the budget may be replenished.
−− It may raise:
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− INTERNAL ERROR : erroneous binding or malfunction of
−− the FSF main scheduler
−− NOT SCHEDULED CALLING TASK : if the calling task is
−− not scheduled under the FSF
−− NOT BOUND : if the calling task does not have
−− a valid server bound to it
−− BAD ARGUMENT : if the synch handle given is not
−− valid
−− SERVER WORKLOAD NOT COMPATIBLE: if the kind of
−− workload of the server is not FSF BOUNDED
procedure Schedule Triggered Job

(Synch Handle : in Synch Obj Handle;
Next Budget : out Ada.Real Time.Time Span;
Next Period : out Ada.Real Time.Time Span;
Was Deadline Missed : out Boolean;
Was Budget Overran : out Boolean);

−− Timed Schedule Triggered Job: This call is the same as
−− fsf schedule triggered job, but with an absolute timeout.
−− The timed out argument, indicates whether the function
−− returned because of a timeout or not
−− It may raise:
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− INTERNAL ERROR : erroneous binding or malfunction of
−− the FSF main scheduler
−− NOT SCHEDULED CALLING TASK : if the calling task is

22

IST-2001 34140 Deliverable WP2-SI5-V3

−− not scheduled under the FSF
−− NOT BOUND : if the calling task does not have
−− a valid server bound to it
−− BAD ARGUMENT : if the synch handle given is not
−− valid
−− SERVER WORKLOAD NOT COMPATIBLE: if the kind of
−− workload of the server is not FSF BOUNDED
procedure Timed Schedule Triggered Job

(Synch Handle : in Synch Obj Handle;
Abs timeout : in Ada.Real Time.Time;
Timed out : out Boolean;
Next Budget : out Ada.Real Time.Time Span;
Next Period : out Ada.Real Time.Time Span;
Was Deadline Missed : out Boolean;
Was Budget Overran : out Boolean);

−−
−− CONTRACT NEGOTIATION OPERATIONS
−−
−− The following functions are used to create servers for a
−− contract parameters specification and also to assign tasks
−− to servers

type Server Id is private;

−− Negotiate Contract: The operation negotiates a contract for
−− a new server. If the on−line admission test is enabled it
−− determines whether the contract can be admitted or not based
−− on the current contracts established in the system. Then it
−− creates the server and recalculates all necessary parameters
−− for the contracts already present in the system. This is a
−− potentially blocking operation; it returns when the system
−− has either rejected the contract, or admitted it and made it
−− effective. It returns 1 in the accepted boolean argument
−− and places the server identification number in the
−− the server output parameter if accepted, or 0 in the
−− accepted output argument if rejected. No task is bound to
−− the newly created server, which will be idle until a task is
−− bound to it. This operation can only be executed by tasks
−− that are already bound to an active server and therefore are
−− being scheduled by the fsf scheduler.
−− It may raise:
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not
−− running
−− INTERNAL ERROR : erroneous binding or malfunction of the FSF
−− main scheduler
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
procedure Negotiate Contract

23

IST-2001 34140 Deliverable WP2-SI5-V3

(Contract : in Contract Parameters;
Accepted : out Boolean;
The Server : out Server Id);

−− Negotiate Contract For Myself: This operation negotiates a
−− contract for a new server, and binds the calling task to it.
−− If the contract is accepted it places the server
−− identification number in the the server output parameter, or
−− an exception is raised if rejected.
−−
−− Implementation dependent issue: In order to allow the usage
−− of application defined schedulers, the calling task must not
−− have the SCHED APP scheduling policy and at the same time be
−− attached to an application scheduler different than the fsf
−− scheduler; in such case, an error is returned. After a
−− successful call the calling task will have the SCHED APP
−− scheduling policy and will be attached to the fsf scheduler.
−− It may raise:
−− UNKNOWN APPSCHEDULED TASK : if the calling task is
−− attached to an application defined scheduler different
−− than the fsf scheduler
−− CONTRACT REJECTED : if the contract is rejected.
−− SERVER WORKLOAD NOT COMPATIBLE: if the kind of workload in
−− the contract is FSF OVERHEAD
procedure Negotiate Contract For Myself

(Contract : in Contract Parameters;
The Server : out Server Id);

−− Bind Task To Server: This operation associates a task with a
−− server, which means that it starts consuming the budget of
−− the server and is executed according to the contract
−− established for that server. If the task is already bound to
−− another server, it is effectively unbound from it and bound
−− to the specified one.
−− It fails if the policy of the server is different than
−− FSF NONE, or if there is already a task bound to this
−− server
−−
−− Implementation dependent issue: In order to allow the usage of
−− application defined schedulers, the given task must be already
−− attached to the fsf scheduler, or be the calling task.
−−
−− It may raise:
−− INTERNAL ERROR : erroneous binding or malfunction of the FSF
−− main scheduler
−− UNKNOWN APPSCHEDULED TASK : if the task is attached to
−− an application defined scheduler different than the fsf
−− scheduler

24

IST-2001 34140 Deliverable WP2-SI5-V3

−− BAD ARGUMENT : if the server value does not complain with
−− the expected format or valid range or the given task
−− does not exist
−− NOT CONTRACTED SERVER : if the referenced server is not
−− valid
−− SERVER WORKLOAD NOT COMPATIBLE: if the kind of workload of
−− the server is FSF OVERHEAD
−− ALREADY BOUND : if the given server has a task already
−− bound
procedure Bind Task To Server

(The Server : in Server Id;
The Task : in Ada.Task Identification.Task Id);

−− Unbind Task From Server: This operation unbinds a task from
−− a server. Since tasks with no server associated are not
−− allow to execute, they remain in a dormant state until they
−− are either eliminated or bound again.
−−
−− If the task is inside a critical section the effects of
−− this call are deferred until the critical section is ended
−−
−− Implementation dependent issue: in the implementation with
−− an application scheduler, the task is still attached to the
−− fsf scheduler, but suspended.
−− It may raise:
−− INTERNAL ERROR : erroneous binding or
−− malfunction of the FSF main scheduler
−− BAD ARGUMENT : if the given task does not
−− exist
−− NOT SCHEDULED TASK : if the given task is
−− not scheduled under the FSF
−− UNKNOWN APPSCHEDULED TASK : if the task is
−− attached to an application defined scheduler different
−− than the fsf scheduler
−− NOT BOUND : if the given task does not
−− have a valid server bound to it
procedure Unbind Task From Server

(The Task : in Ada.Task Identification.Task Id);

−− Get Server: This operation returns the Id of the server
−− associated with the specified task.
−− It may raise:
−− NOT SCHEDULED TASK: if the given task is not under
−− the control of the scheduling framework
−− NOT BOUND : if the given task does not have a valid
−− server bound to it
−− BAD ARGUMENT : if the given task does not exist
function Get Server

25

IST-2001 34140 Deliverable WP2-SI5-V3

(The Task : in Ada.Task Identification.Task Id)
return Server Id;

−− Get Contract: This operation returns the contract parameters
−− currently associated with the specified server.
−− It may raise:
−− BAD ARGUMENT :if the given server id is incorrect
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not running
−− NOT CONTRACTED SERVER : if the server of the calling task
−− has been cancelled or it is not valid
function Get Contract

(The Server : in Server Id)
return Contract Parameters;

−− Cancel Contract: The operation eliminates the specified
−− server and recalculates all necessary parameters for the
−− contracts remaining in the system. This is a potentially
−− blocking operation; it returns when the system has made the
−− changes effective.
−− It may raise:
−− BAD ARGUMENT :if the given server id is incorrect
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not running
−− NOT CONTRACTED SERVER : if the server of the calling task
−− has been cancelled or it is not valid
procedure Cancel Contract

(The Server : in Server Id);

−− Renegotiate Contract: The operation renegotiates a contract
−− for an existing server. If the on−line admission test is
−− enabled it determines whether the contract can be admitted
−− or not based on the current contracts established in the
−− system. If it cannot be admitted, the old contract remains
−− in effect and returns 0 . If it can be admitted, it
−− recalculates all necessary parameters for the contracts
−− already present in the system and returns 1 . This is a
−− potentially blocking operation; it returns when the system
−− has either rejected the new contract, or admitted it and
−− made it effective.
−− It may raise:
−− BAD ARGUMENT :if the given server id is incorrect
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not running

26

IST-2001 34140 Deliverable WP2-SI5-V3

−− NOT CONTRACTED SERVER : if the server of the calling task
−− has been cancelled or it is not valid
function Renegotiate Contract

(New Contract : in Contract Parameters;
The Server : in Server Id) return Boolean;

−− Request Contract Renegotiation: The operation enqueues a
−− renegotiate operation for an existing server, and returns
−− immediately. The renegotiate operation is performed
−− asynchronously, as soon as it is practical; meanwhile the
−− system operation will continue normally. When the
−− renegotiation is made, if the on−line admission test is
−− enabled it determines whether the contract can be admitted
−− or not based on the current contracts established in the
−− system. If it cannot be admitted, the old contract remains
−− in effect. If it can be admitted, it recalculates all
−− necessary parameters for the contracts already present in
−− the system. When the operation is completed, notification is
−− made to the caller, if requested, via a signal. The status
−− of the operation (in progress, admitted, rejected) can be
−− checked with the Get Renegotiation Status operation. The
−− argument notification can be null signal (no notification),
−− or any posix signal; and in this case notification data is
−− to be sent with the signal.
−− It may raise:
−− BAD ARGUMENT :if the given server id is incorrect or
−− sig notify is neither Null Signal nor a valid POSIX signal
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not running
−− NOT CONTRACTED SERVER : if the server of the calling task
−− has been cancelled or it is not valid
procedure Request Contract Renegotiation

(New Contract : in Contract Parameters;
The Server : in Server Id;
Notification : in POSIX Signals.Signal := Null Signal;
Notification Data : in POSIX Signals.Signal Data :=

Null Signal Data);

type Renegotiation Status is

(In Progress, Rejected, Admitted, Not Requested);

−− Get Renegotiation Status: The operation reports on the
−− status of the last renegotiation operation enqueued for
−− the specified server. It is callable even after
−− notification of the completion of such operation, if
−− requested. If the fsf request contract renegotiation
−− operation has not ever been called for the given server

27

IST-2001 34140 Deliverable WP2-SI5-V3

−− the status returned is NOT REQUESTED
−− It may raise:
−− BAD ARGUMENT :if the given server id is incorrect
−− NOT SCHEDULED CALLING TASK : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− NOT CONTRACTED SERVER : if the server of the calling
−− task has been cancelled or it is not valid
function Get Renegotiation Status

(The Server : in Server Id)
return Renegotiation Status;

−−
−− OBTAINING INFORMATION FROM THE SCHEDULER
−−

type Capacity is range 0 .. UINT32 MAX;

−− Is Admission Test Enabled: It Returns 1 if the system
−− is configured with the on−line admission test enabled,
−− or 0 otherwise.
function Is Admission Test Enabled

return Boolean;

−− Get Cpu Time:This function returns the current execution
−− time spent by the task or tasks that are bound to the
−− specified server.
−− It may raise:
−− BAD ARGUMENT : if the value of the server argument
−− is incorrect
−− NOT SCHEDULED CALLING TASK : if the calling task
−− is not scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− NOT CONTRACTED SERVER : if the server of the calling
−− task has been cancelled or it is not valid
function Get Cpu Time

(The Server : in Server Id)
return Ada.Real Time.Time Span;

−− Get Remaining Budget: This function returns the
−− remaining execution−time budget associated with the
−− specified server in the present cycle.
−− It may raise:
−− BAD ARGUMENT : if the value of the server argument
−− is incorrect

28

IST-2001 34140 Deliverable WP2-SI5-V3

−− NOT SCHEDULED CALLING TASK : if the calling task
−− is not scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− NOT CONTRACTED SERVER : if the server of the calling
−− task has been cancelled or it is not valid
function Get Remainig Budget

(The Server : in Server Id)
return Ada.Real Time.Time Span;

−− Get Budget And Period: This function returns in the
−− output arguments cycle budget and cycle period, the
−− execution−time budget and the period respectively
−− associated with the specified server.
−− It may raise:
−− BAD ARGUMENT : if the value of the server argument
−− is incorrect
−− NOT SCHEDULED CALLING TASK : if the calling task
−− is not scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− NOT CONTRACTED SERVER : if the server of the calling
−− task has been cancelled or it is not valid
procedure Get Budget And Period

(The Server : in Server Id;
Cycle Budget : out Ada.Real Time.Time Span;
Cycle Period : out Ada.Real Time.Time Span);

−−
−− SERVICE TASK TUNING
−−

−− Set Service Task Data: This function allows the
−− application to change the period and budget of the
−− service task that makes the negotiations. Increasing the
−− utilization reserved for this task makes the
−− negotiations faster, but introduces additional load in
−− the system that may decrease the capacity available for
−− the servers. For this call, the system will make a
−− schedulability analysis to determine if the new
−− situation is acceptable or not and this condition is
−− returned by the function. If the new service task data
−− is accepted, the system will reassign budgets and
−− periods to the servers according to the new bandwidth
−− available, in the same way as it does for a regular
−− contract negotiation.
−−
−− When its budget is exhausted, the service task may run

29

IST-2001 34140 Deliverable WP2-SI5-V3

−− in the background
−−
−− The service task starts with a default budget and
−− period that are configurable
−−
−− Implementation dependency: in the fixed priority
−− implementtaion of fsf, the default priority is lower
−− than the priority of any server, but higher than the
−− background. According to the implementation−dependent
−− module the priority is adjustable by means of a function
−− that changes its preemption level
−− It may raise:
−− BAD ARGUMENT : if the value of the budget value is
−− greater than the value of the period
−− NOT SCHEDULED CALLING TASK : if the calling task
−− is not scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− NOT CONTRACTED SERVER : if the server of the calling
−− task has been cancelled or it is not valid
function Set Service Task Data

(budget : Ada.Real Time.Time Span;
period : Ada.Real Time.Time Span)
return Boolean;

−− Get Service Task Data: this function returns in the
−− output variables budget and period, respectively, the
−− current budget and period of the service task.
−− It may raise:
−− NOT SCHEDULED CALLING TASK : if the calling task
−− is not scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− NOT CONTRACTED SERVER : if the server of the calling
−− task has been cancelled or it is not valid
procedure Get Service Task Data

(budget : out Ada.Real Time.Time Span;
period : out Ada.Real Time.Time Span);

−−
−− BACKGROUND MANAGEMENT
−−

−− A round−robin background scheduling policy is available
−− for those tasks that do not have real−time requirements.
−− Because some of these tasks may require sharing
−− information with other tasks run by regular servers,
−− special background contracts may be created for

30

IST-2001 34140 Deliverable WP2-SI5-V3

−− specifying the synchronization requirements.
−−
−− The way of specifying a background contract is by
−− setting budget min = period max = 0. Negotiation may
−− fail if the contract uses shared objects. If the
−− contract has no shared objects the returned server id
−− represents the background and may be used to bind more
−− than one task. If the contract has shared objects a
−− server is created to keep track of them, but the
−− associated tasks are executed in the background,
−− together with the other background tasks

−−
−− CHANGE OF MODE: GROUPS OF CONTRACTS
−−

−− Necesary Data types

type Contract Set is private;

Null Contract Set : constant Contract Set;

Max N Contract Values : constant Natural := −− Not specified by the FSF.

type C Index is range 0 .. Max N Contract Values;

subtype Positive C Index is C Index range 1 .. C Index’Last;

procedure Add

(Set : in out Contract Set;
Value : in Contract Parameters);

function Size

(Set : Contract Set)
return C Index;

function Element

(Set : Contract Set;
Index : Positive C Index)
return Contract Parameters;

type Server Set is private;

Null Server Set : constant Server Set;

Max N Server Values : constant Natural := −− Not specified by the FSF.

type S Index is range 0 .. Max N Server Values;

31

IST-2001 34140 Deliverable WP2-SI5-V3

subtype Positive S Index is S Index range 1 .. S Index’Last;

procedure Add

(Set : in out Server Set;
Value : in Server Id);

function Size

(Set : Server Set)
return S Index;

function Element

(Set : Server Set;
Index : Positive S Index)
return Server Id;

−− Negotiate group: This operation analizes the
−− schedulability of the context that results from
−− negotiating the contracts specified in the contracts up
−− set and cancelling the contracts referenced by the
−− servers down set. If the overall negotiation is
−− successful, a new server will be created for each of the
−− elements of the contracts up group, the servers in the
−− servers down set will be cancelled, the set of new
−− server ids will be returned in the output variable
−− servers up, and the Accepted output variable will return
−− 1 . Otherwise, the Accepted output variable will
−− return 0 , and no other effect will take place.
−− Observe that in order to be able to receive the returned
−− arguments, the server of the calling task should not be
−− in the servers down list.
−− It may raise:
−− INTERNAL ERROR : erroneous binding or malfunction of
−− the FSF main scheduler
−− BAD ARGUMENT : if both the contracts up and
−− servers down arguments are respectively
−− Null Contract set and Null Server set or any of them
−− has erroneous size or its elements are corrupted or
−− not in the valid range respectively
−− NOT SCHEDULED CALLING TASK : if the calling task
−− is not scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or
−− not running
−− NOT CONTRACTED SERVER : if the server of the calling
−− task has been cancelled or it is not valid
procedure Negotiate group

(contracts up : in Contract Set;
servers down : in Server Set;
servers up : out Server Set;
accepted : out Boolean);

32

IST-2001 34140 Deliverable WP2-SI5-V3

−−
−− INITIALIZATION SERVICES
−−

−− Init: No fsf function can be called before this
−− operation. After calling Init, the calling task (the
−− main program) will be executing in the background. Then,
−− it can do the negotiations, create the tasks and, if
−− needed, activate them via some user−specified
−− synchronization mechanism. It may also create a contract
−− for itself. The second time this function is called it
−− fails.
−−
−− Implementation issue: When using the application defined
−− scheduling mechanism the tasks that are to be
−− incorporated in the application defined scheduler must
−− be in the ready state. Because of this, two basic
−− approachs are envisioned to initialize the system, in a
−− centralized approach the main program will call Init,
−− negotiate all the contracts (maybe with the
−− negotiate group operation), create all the tasks
−− dynamically with a priority set staticallly to a value
−− lower than the background, and then do the corresponding
−− bind operations. If a non− centralized initialization
−− scheme is used, each task may try to initialize the fsf
−− subsystem by calling Init, and then negotiate its own
−− contract (with negotiate contract for myself).
−− It may raise:
−− SYSTEM ALREADY INITIALIZED : if the function has
−− already been called before
−− It may also raise any other exception due to errors
−− that may be encountered by the underlying operating
−− system primitives required to perform the FSF system
−− start up
procedure Init;

Too Many Tasks : exception;
Bad Argument : exception;
Invalid Synch Obj Handle : exception;
No Renegotiation Requested : exception;
Contract Rejected : exception;
Not Scheduled Calling Task : exception;
Not Bound : exception;
Unknown Appscheduled Task : exception;
Not Contracted Server : exception;
Not Scheduled Task : exception;
Too Many Service Jobs : exception;

33

IST-2001 34140 Deliverable WP2-SI5-V3

Too Many Synch Objs : exception;
Too Many Servers In Synch Obj : exception;
Too Many Events In Synch Obj : exception;
Internal Error : exception;
Too Many Servers : exception;
Invalid Scheduler Reply : exception;
Too Many Pending Replenishments : exception;
System Already Initailized : exception;
Shared Obj Already Initialized : exception;
Shared Obj Not Initialized : exception;
Sched Policy Not Compatible : exception;
Workload Not Compatible : exception;
Already Bound : exception;
Wrong Network : exception;
Too Large : exception;
Buffer Full : exception;
No Space : exception;
No Messages : exception;
Module Not Supported : exception;
System Not Initialized : exception;
Too Many Shared Objs : exception;

−− functions that encapsulate the configuration information
−− about the modules that are supported (set in the private part)
function is Hiearchical Module Supported

return Boolean;
function is Distributed Module Supported

return Boolean;
function is Distributed Spare Capacity Module Supported

return Boolean;
function is Spare Capacity Module Supported

return Boolean;
function is Implementation Specific Module Supported

return Boolean;
function is Dynamic Reclaiming Module Supported

return Boolean;
function is Shared Objects Module Supported

return Boolean;

private

−− Not specified by the FSF.

end Fsf;

34

IST-2001 34140 Deliverable WP2-SI5-V3

B.2 FSF Spare Capacity Module

−−===
−− FFFFFFIII RRRRR SSTTTTTTT
−− FF IIR RR SS
−− FF IR SS
−− FFFFFF RRRR SSSSST
−− FF FI RRR SS
−− FF I I RRR SS
−− FF II I I IR RS
−−===

−− Basic FSF(FIRST Scheduling Framework)
−− spare capacity sharing functionality

package Fsf.Spare Capacity is

−− Set Contract Reclamation Parameters: The operation updates the
−− specified contract parameters object by setting its maximum usable
−− budget, minimum period, granularity, utilization set, quality, and
−− importance to the specified input parameters.
−− It may raise:
−− Bad argument: if
−− (budget max value is grater than period max or smaller than budget min) or
−− (period min is smaller than budget min or larger than period max) or
−− (granularity is neither FSF CONTINUOUS nor FSF DISCRETE) or
−− (granularity is FSF CONTINUOUS and
−− utilization set is not FSF NULL UTILIZATION SET) or
−− (granularity is FSF DISCRETE and
−− utilization set is FSF NULL UTILIZATION SET) or
−− (utilization set is not FSF NULL UTILIZATION SET and
−− (size of utilization set less than 2 or greater
−− than FSF MAX N UTILIZATION VALUES)) or
−− (the utilization set elements are not in increasing utilization order) or
−− (the first utilization value in the utilization set does not match
−− the pair (budget min, period max) of the contract) or
−− (the last utilization value in the utilization set does not match
−− the pair (budget max, period min) of the contract)
−− Constraint error: if
−− (quality < 0) or
−− (importance is less than 1 or greater than FSF N IMPORTANCE LEVELS)
procedure Set Contract Reclamation Parameters

(Contract : in out Fsf.Contract Parameters;
Budget Max : in Ada.Real Time.Time Span;
Period Min : in Ada.Real Time.Time Span;
The Granularity : in Fsf.Granularity := Fsf.Continuous;
The Utilization Set : in Fsf.Utilization Set

:= Fsf.Null Utilization Set;
The Quality : in Fsf.Quality := Fsf.Quality’First;

35

IST-2001 34140 Deliverable WP2-SI5-V3

The Importance : in Fsf.Importance := Fsf.Importance’First);

−− Get Contract Reclamation Parameters: The operation obtains from
−− the specified contract parameters object its maximum budget,
−− minimum period,granularity, utilization set, quality, and importance.
−− All the utilization values of the utilization set are copied, if the
−− array given to the Utilization Set is not unconstrained,
−− the constraint error exception could be raised.
procedure Get Contract Reclamation Parameters

(Contract : in Fsf.Contract Parameters;
Budget Max : out Ada.Real Time.Time Span;
Period Min : out Ada.Real Time.Time Span;
The Granularity : out Fsf.Granularity;
The Utilization Set : out Fsf.Utilization Set;
The Quality : out Fsf.Quality;
The Importance : out Fsf.Importance);

−− Request Change Quality And Importance: The operation enqueues a
−− request to change the quality and importance parameters of the
−− specified server, and returns immediately. The change operation is
−− performed as soon as it is practical; meanwhile the system operation
−− will continue normally.
−− It may raise:
−− BAD ARGUMENT : if the value of the server argument is not in range
−− Constraint error: if (quality < 0) or (importance is less than 1 or
−− greater than FSF N IMPORTANCE LEVELS)
−− NOT SCHEDULED CALLING THREAD : if the calling thread is not
−− scheduled under the FSF scheduler
−− INVALID SCHEDULER REPLY: if the scheduler is wrong or not running
−− NOT CONTRACTED SERVER: if the server has been cancelled or it
−− is not valid
procedure Request Change Quality And Importance

(The Server : in Fsf.Server Id;
New Importance : in Fsf.Importance;
New Quality : in Fsf.Quality);

−− Get Total Quality: This operation calculates and returns the sum of
−− the quality parameters for all servers in the system of importance
−− level equal to that of the specified server.
−− It may raise:
−− BAD ARGUMENT : if the value of the server argument is not in range.
−− NOT SCHEDULED CALLING THREAD : if the calling thread is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not running.
−− NOT CONTRACTED SERVER : if the server has been cancelled or it
−− is not valid
function Get Total Quality

36

IST-2001 34140 Deliverable WP2-SI5-V3

(The Server : in Fsf.Server Id)
return Natural;

−− get available capacity: This operation returns the spare capacity
−− currently assigned to the importance level of the specified server.
−− The capacity represents the processor or network utilization and it is
−− the number returned divided by Fsf.UINT32 MAX (2∗∗32 − 1).
−− It may raise:
−− BAD ARGUMENT : if the value of the server argument is not in range
−− NOT SCHEDULED CALLING THREAD : if the calling thread is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not running
−− NOT CONTRACTED SERVER : if the server has been cancelled or it
−− is not valid
function Get Available Capacity

(The Server : in Fsf.Server Id)
return Fsf.Capacity;

end Fsf.Spare Capacity;

37

IST-2001 34140 Deliverable WP2-SI5-V3

B.3 FSF Hierarchical Scheduling Module

−−===
−− FFFFFFIII RRRRR SSTTTTTTT
−− FF IIR RR SS
−− FF IR SS
−− FFFFFF RRRR SSSSST
−− FF FI RRR SS
−− FF I I RRR SS
−− FF II I I IR RS
−−===

−− FSF(FIRST Scheduling Framework)
−− hierarchical scheduling management

with Ada.Task Identification;

package Fsf.Hierarchical is

−− init local scheduler: This call has the following effects:
−− FP: none
−− EDF: none
−− TABLE DRIVEN :
−− Records the schedule duration, and starts the
−− schedule at the time of the call. After the
−− schedule duration has elapsed, the schedule in
−− the table is repeated.
−− It may raise:
−− BAD ARGUMENT: if the value of the server argument is not valid
−− NOT SCHEDULED CALLING THREAD: if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY: if the scheduler is wrong or not running
−− NOT CONTRACTED SERVER: if the server of the calling task
−− has been cancelled or it is not valid
procedure init local scheduler (

server : in Fsf.server id;
info : in Fsf.sched init info);

−− ///
−− // CONTRACT PARAMETERS
−− //

−− set contract scheduling policy: The operation updates the
−− specified contract parameters object by setting its scheduling
−− policy to the specified input parameter. The default policy is
−− FSF NONE, which means that only one task may be bound to the
−− server.
procedure Set Contract scheduling policy

(Contract : in out Fsf.Contract Parameters;

38

IST-2001 34140 Deliverable WP2-SI5-V3

The sched policy : in Fsf.Sched policy := Fsf.None);

−− get contract scheduling policy: This operation returns the
−− scheduling policy of the specified contract parameters object
function Get Contract scheduling policy

(Contract : in Fsf.Contract Parameters)
return Fsf.Sched policy;

−− bind local thread to server: This operation associates a task
−− with a server, which must have a policy different than FSF NONE. The
−− task’s local scheduling parameters are set to the value stored in
−− sched params, which must be compatible with the server’s scheduling
−− policy. After the call the task starts consuming the server’s
−− budget and is executed according to the contract established
−− for that server and to its scheduling policy. If the task was
−− already bound to another server, it is effectively unbound from
−− it and bound to the specified one.
−−
−− Implementation dependent issues:
−− − In order to allow the usage of application defined schedulers,
−− the given task must not be attached to an application scheduler
−− different than the fsf scheduler.
−− − In the present version of the application defined scheduling
−− mechanism in MaRTE OS, the creation of the local tasks and the
−− bind must be performed dynamically from a higher priority task,
−− so that the task is in the ready state at the time of assigning
−− it to the FSF application defined scheduler.
−− It may raise:
−− BAD ARGUMENT : if the the server argument does not complain with
−− the expected format or valid range, or the given task does not
−− exist.
−− SCHED POLICY NOT COMPATIBLE : if the scheduling policy
−− in sched params is not compatible to the server’s one.
−− INTERNAL ERROR : erroneous binding or malfunction of the FSF
−− main scheduler
−− UNKNOWN APPSCHEDULED TASK : if the task is attached to
−− an application defined scheduler different than the fsf scheduler
−− NOT CONTRACTED SERVER : if the referenced server is not valid
−− SERVER WORKLOAD NOT COMPATIBLE: if the kind of workload
−− of the server is FSF OVERHEAD
procedure Bind Local Task To Server

(the Server : in Fsf.Server Id;
the Task : in Ada.Task Identification.Task Id;
sched params : in Fsf.Sched Params);

−− set local task sched parameters: this function changes the
−− local scheduling parameters of the task to the value given
−− by sched params. This value must be compatible to the

39

IST-2001 34140 Deliverable WP2-SI5-V3

−− scheduling policy of the server to which the task is bound.
−− It may raise:
−− BAD ARGUMENT : if the given task does not exist.
−− SCHED POLICY NOT COMPATIBLE : if the task is already bound
−− and the scheduling policy in sched params is not compatible
−− to the one of the task’s server.
−− NOT SCHEDULED TASK : if the given task is not scheduled
−− under the FSF
−− INTERNAL ERROR : erroneous binding or malfunction of the FSF
−− main scheduler
−− UNKNOWN APPSCHEDULED TASK : if the task is attached to an
−− application defined scheduler different than the fsf scheduler
−− NOT CONTRACTED SERVER : if the task is bound and its server
−− is not valid
procedure set local task sched parameters

(the Task : in Ada.Task Identification.Task Id;
sched params : in Fsf.Sched Params);

−− get local task sched parameters: this function returns the
−− local scheduling parameters of the specified task
−− It may raise:
−− BAD ARGUMENT: if the task does not exist
−− NOT SCHEDULED THREAD: if the given thread is not scheduled
−− under the FSF
function get local task sched parameters

(the Task : in Ada.Task Identification.Task Id)
return Fsf.Sched Params;

end Fsf.Hierarchical;

40

IST-2001 34140 Deliverable WP2-SI5-V3

B.4 FSF Shared Objects Module

−−===
−− FFFFFFIII RRRRR SSTTTTTTT
−− FF IIR RR SS
−− FF IR SS
−− FFFFFF RRRR SSSSST
−− FF FI RRR SS
−− FF I I RRR SS
−− FF II I I IR RS
−−===

−− Basic FSF(FIRST Scheduling Framework)
−− shared objects functionality

package Fsf.Shared Objects is

−− SHARED OBJECTS & OPERATIONS MANAGEMENT
−−

−− init shared object: Initialization of shared objects. If the
−− object identified by obj id does not yet exist it is created, a
−− handle to the object is returned. If the object already exists,
−− the function fails.
−− It may raise:
−− Bad argument: if obj id is the null string
−− SHARED OBJ ALREADY INITIALIZED: if the object identified
−− by obj id already exists.
function init shared object

(obj id : Fsf.shared obj id)
return Fsf.shared obj handle;

−− get shared object handle: getting the handle of shared objects.
−− If the object already exists a handle to the object is returned.
−− Otherwise, an error code is returned by the function.
−− It may raise:
−− Bad argument: if obj id is the null string
−− SHARED OBJ NOT INITIALIZED: if the object identified
−− by obj id does not exists.
−− NOT SCHEDULED CALLING THREAD : if the calling task is not
−− scheduled under the FSF
−− INVALID SCHEDULER REPLY : the scheduler is wrong or not
−− running
−− NOT CONTRACTED SERVER : if the server of the calling task
−− has been cancelled or it is not valid
function get shared object handle

(obj id : Fsf.shared obj id)
return Fsf.shared obj handle;

41

IST-2001 34140 Deliverable WP2-SI5-V3

−− CONTRACT PARAMETERS
−−

−− set contract synchronization parameters: The operation updates
−− the specified contract parameters object by setting its critical
−− sections to the specified input parameter.
procedure Set Contract Synchronization Parameters

(Contract : in out Fsf.Contract Parameters;
The Critical Sections : in Fsf.Critical Sections

:= Fsf.Null Critical Sections);

−− fsf get contract synchronization parameters: The operation obtains
−− from the specified contract parameters object its critical sections,
−− and returns them.
function get contract synchronization parameters

(Contract : Fsf.Contract Parameters)
return Fsf.Critical Sections;

end Fsf.Shared Objects;

42

IST-2001 34140 Deliverable WP2-SI5-V3

B.5 FSF Implementation Defined Module

−−===
−− FFFFFFIII RRRRR SSTTTTTTT
−− FF IIR RR SS
−− FF IR SS
−− FFFFFF RRRR SSSSST
−− FF FI RRR SS
−− FF I I RRR SS
−− FF II I I IR RS
−−===

−− Basic FSF(FIRST Scheduling Framework)
−− implementation specific functionality

package Fsf.Implementation Specific is

−− set contract preemption level: The operation updates the
−− specified contract parameters object by setting its preemption level
−− to the specified input parameter.
procedure Set Contract Preemption Level

(Contract : in out Fsf.Contract Parameters;
The Preemption Level : in Fsf.Preemption Level

:= Fsf.Preemption Level’First); −−’

−− get contract preemption level: The operation obtains from the
−− specified contract parameters object its preemption level and
−− returns it.
function Get Contract Preemption Level

(Contract : Fsf.Contract Parameters)
return Fsf.Preemption Level;

−− set service task preemption level: this function sets the
−− preemption level of the service task to the specified value.
−− The initial preemption level is a configurable parameter. This
−− value is stored in a temporary variable and it is used the next
−− time the service thread data is updated with the
−− fsf set service thread data function

procedure set service task preemption level

(The Preemption Level : in Fsf.Preemption Level);

−− get service task preemption level: this function returns the
−− current preemption level of the service task
function get service task preemption level

return Fsf.Preemption Level;

−− set shared obj preemption level: The operation updates the

43

IST-2001 34140 Deliverable WP2-SI5-V3

−− specified shared object by setting its preemption level
−− to the specified input parameter.
−− OBSERVATION: if this value is changed being any contract that
−− uses the resource already accepted, the system’s behavior and
−− particularly the acceptance tests correctness are not garantee
−− and probably wrong.
procedure set shared obj preemption level

(obj handle : in Fsf.Shared obj handle;
preemption level : in Fsf.Preemption level

:= Fsf.Preemption Level’Last);

−− fsf get shared obj preemption level: The operation obtains from the
−− specified shared object its preemption level and copies
−− it to the place pointed to by the specified input parameter.
function get shared obj preemption level

(obj handle : in Fsf.shared obj handle)
return Fsf.Preemption level;

end Fsf.Implementation Specific;

44

IST-2001 34140 Deliverable WP2-SI5-V3

B.6 FSF Distributed Module

−−===
−− FFFFFFIII RRRRR SSTTTTTTT
−− FF IIR RR SS
−− FF IR SS
−− FFFFFF RRRR SSSSST
−− FF FI RRR SS
−− FF I I RRR SS
−− FF II I I IR RS
−−===

−− FSF(FIRST Scheduling Framework)
−− distributed services functionality
with Ada.Streams;
package Fsf.Distributed is

−− This operation should be called before any other of
−− the distributed module. If it is not called, all of the
−− other operations will raise System Not Initialized.
−− It may raise:
−− System Already Initailized: if it is not the first time it
−− is called.
procedure Init;

−− This operation identifies a contract as a
−− bandwidth reservation on the network identified
−− by the The network id input parameter. Then the
−− contract negotiation is performed using the
−− conventional negotiation functions, including
−− the possibility of grouping the contract with
−− others. If the The network id given is
−− Fsf.Null Network id, the contract is considered
−− not to reserve bandwidth in a network but to
−− operate as any other regular contract. It
−− It may raise:
−− Bad argument: if the network id is not valid.
procedure Set Contract Network id

(Contract : in out Fsf.Contract Parameters;
The Network id : in Fsf.Network Id := Fsf.Default Network id);

−− This operation returns the network identification
−− corresponding to the contract parameters object
−− identified by contract. If the contract is a regular
−− one and therefore it has not a network id set, it
−− returns the Fsf.NULL NETWORK ID constant instead.

function Get Contract Network id

(Contract : in Fsf.Contract Parameters)
return Fsf.Network Id;

45

IST-2001 34140 Deliverable WP2-SI5-V3

−− Transmission services:

−− private types for fsf endpoints
type Send endpoint is private;
type Receive endpoint is private;

−− The node address type specifies the node address
−− in a communication−protocol−independent way. The actual
−− address is obtained via a configuration dependent mapping
−− function
subtype Node address is Natural;

−− The port type specifies the information that is
−− necessary to get in contact with the thread in the
−− receiving node, in a protocol−independent way.
−− The actual port number is obtained via a configuration
−− dependent mapping function
subtype Port is Natural;

−− This operation creates a unidirectional input
−− data endpoint through which, after the
−− corresponding binding, it is possible to send
−− data. network id identifies the network to use,
−− receiver specifies the communication protocol
−− dependent information that is necessary to
−− address the receiving node, and port specifies
−− the communication protocol dependent information
−− that is necessary to get in contact with the
−− desired destination.
−− It may raise:
−− Bad Argument : if the network id or the port are
−− not valid.
procedure

create send endpoint

(the network id : in Fsf.network id := Fsf.Default Network id;
receiver : in Node address;
the port : in Port;
endpoint : out Send endpoint);

−− This operation eliminates any resources reserved
−− for the referenced endpoint. If the endpoint is
−− bound to a network server, it is unbound from it
−− and can not be further used to invoke send
−− operations on it.
−− It may raise:
−− Bad Argument : if endpoint is not valid.
procedure

destroy send endpoint

46

IST-2001 34140 Deliverable WP2-SI5-V3

(endpoint : in out Send endpoint);

−− This operation returns in the variables the network id,
−− receiver, and port, the corresponding
−− parameters used in the creation of the given
−− send endpoint.
−− It may raise:
−− BAD ARGUMENT: if endpoint is not valid.
procedure

get send endpoint parameters

(endpoint : in Send endpoint;
the network id : out Fsf.Network id;
receiver : out Node address;
the port : out Port);

−− This operation associates a send endpoint with a
−− server, which means that messages sent through
−− that endpoint will consume the server’s reserved
−− bandwidth and its packets will be sent according
−− to the contract established for that server. If
−− the endpoint is already bound to another server,
−− it is effectively unbound from it and bound to
−− the specified one.
−− It may raise:
−− BAD ARGUMENT: if endpoint or server are not valid.
−− ALREADY BOUND: if the server is currently bound
−− to any other send endpoint.
−− WRONG NETWORK: if the server’s network id is not
−− the same as the one in the endpoint
procedure

bind endpoint to server

(server : in Fsf.server id;
endpoint : in out Send endpoint);

−− This operation unbinds a send endpoint from a
−− server. Endpoints with no server associated
−− cannot be used to send data, and they stay in
−− that state until they are either eliminated or
−− bound again.
−− It may raise:
−− BAD ARGUMENT: if endpoint is not valid.
−− NOT BOUND: if the endpoint has no server
−− bound.
procedure

unbind endpoint from server

(endpoint : in out Send endpoint);

−− This operation returns the id of the server that
−− is bound to the specified send endpoint.
−− It may raise:

47

IST-2001 34140 Deliverable WP2-SI5-V3

−− BAD ARGUMENT: if endpoint is not valid.
function

get endpoint server

(endpoint : in Send endpoint)
return Fsf.Server Id;

−− This operation sends the message stored in msg
−− through the given endpoint. The operation is non−blocking and
−− returns immediately. An internal fsf service will schedule the
−− sending of messages and implement the communications sporadic server
−− corresponding to the network server bound to the given endpoint.
−− Messages sent through the same endpoint are received in the same
−− order in which they were sent.
−− It may raise:
−− BAD ARGUMENT: if endpoint or msg are not valid.
−− NOT BOUND: if the endpoint has not a valid
−− server bound.
−− TOO LARGE: if the message is too large for the
−− network provider (protocol) used
−− BUFFER FULL: if the sending queue is full
procedure

send

(endpoint : in Send endpoint;
msg : in Ada.Streams.Stream Element Array);

−− This operation creates a receive endpoint with all the information
−− that is necessary to receive information from the specified network
−− and port.
−− It may raise:
−− BAD ARGUMENT: if the port or the network id are not valid.
procedure

create receive endpoint

(the network id : in Fsf.network id := Fsf.Default Network id;
the port : in Port;
endpoint : out Receive endpoint);

−− This operation eliminates any resources reserved
−− for the referenced endpoint. it
−− can not be further used to invoke receive
−− operations on it.
−− It may raise:
−− Bad Argument : if endpoint is not valid.
procedure

destroy receive endpoint

(endpoint : in out Receive endpoint);

−− This operation returns in the variables the network id,
−− and port, the corresponding
−− parameters used in the creation of the given

48

IST-2001 34140 Deliverable WP2-SI5-V3

−− receive endpoint.
−− It may raise:
−− BAD ARGUMENT: if endpoint is not valid.
procedure

get receive endpoint parameters

(endpoint : in Receive endpoint;
the network id : out Fsf.Network Id;
the port : out Port);

−− If there are no messages available in the specified receive endpoint
−− this operation blocks the calling thread waiting for a message to be
−− received. When a message is available, if its size is less than or
−− equal to the length of the stream Data, the function stores it in the
−− stream and puts the number of bytes received in the variable Last.
−− Messages arriving at a receiver buffer that is full will be silently
−− discarded. The application is responsible of reading the receive
−− endpoints with appropriate regularity, or of using a sequence number
−− or some other mechanism to detect any lost messages.
−− It may raise:
−− BAD ARGUMENT: if the endpoint is not valid.
−− NO SPACE: if the stream message is too small for the message
−− received (in which case the message is lost).
−− NOT BOUND: if the endpoint has not a valid
−− server bound.
procedure

receive

(endpoint : in Receive endpoint;
Data : out Ada.Streams.Stream Element Array;
Last : out Ada.Streams.Stream Element Offset);

−− This operation is the same as receive, except
−− that if there are no messages available in the
−− specified receive endpoint at the time of the call
−− the operation raises NO MESSAGES
procedure

try receive

(endpoint : in Receive endpoint;
Data : out Ada.Streams.Stream Element Array;
Last : out Ada.Streams.Stream Element Offset);

−− Getting configuration dependent distributed information section

−− This operation returns the transmission time that it takes
−− to send a packet through the network designated by
−− network id, when there is no contention, but including any
−− network overheads. It is used to calculate the minimum and
−− maximum budgets used in the preparation of network
−− contracts. The effective network utilization budget
−− (usually called bandwidth) is always assiged as a number
−− of packets per time unit, so the time used in the

49

IST-2001 34140 Deliverable WP2-SI5-V3

−− negotiation of contracts will be internally transformed
−− into the corresponding necessary number of packets.
−− It may raise:
−− BAD ARGUMENT: if network id is not valid.
function packet tx time

(the network id : in Fsf.network id := Fsf.Default Network id)
return Ada.Real Time.Time Span;

−− This operation returns the maximum number of bytes that
−− can be sent in a packet through the network designated by
−− network id. It is usually a configuration value and it
−− helps the application user to calculate the number of
−− packets it will need to reserve for the transmision of its
−− messages and consequently prepare the corresponding
−− contract.
−− It may raise:
−− BAD ARGUMENT: if network id is not valid.
function packet size

(the network id : in Fsf.network id := Fsf.Default Network id)
return Natural;

−− This operation is used to obtain the maximum number of
−− packets of which a message can be formed, for the
−− specified network. A message is defined as the piece of
−− information used in a send operation. Since the value
−− returned by this operation is measured in packet units,
−− the effective size can be calculated multiplying this
−− value by the size of a packet. When the value returned
−− by this operation is larger than 1 it means the
−− implementation will make the partition of messages into
−− packets and its recomposition at the receiving node.
−− It may raise:
−− BAD ARGUMENT: if network id is not valid.
function max message size

(the network id : in Fsf.network id := Fsf.Default Network id)
return Natural;

private

−− Not specified by the FSF.

end Fsf.Distributed;

B.7 FSF Distributed Spare Capacity

−−===
−− FFFFFFIII RRRRR SSTTTTTTT
−− FF IIR RR SS
−− FF IR SS

50

IST-2001 34140 Deliverable WP2-SI5-V3

−− FFFFFF RRRR SSSSST
−− FF FI RRR SS
−− FF I I RRR SS
−− FF II I I IR RS
−−===

−− FSF(FIRST Scheduling Framework)
−− distributed spare capacity functionality

package Fsf.Distributed.Spare Capacity is

−− This operation sets the granted capacity flag in the contract
−− parameters object pointed to by contract to the boolean specified in
−− granted capacity flag. This flag indicates to the scheduler that
−− once the negotiation of the respective contract is finished, the
−− first values for the budget and period given to the corresponding
−− server must not be changed due to the negotiation or renegotiation
−− of any other contract in the system. The period can change, though,
−− if a renegotiation or a change of quality and importance is
−− requested for the corresponding server.
−− It may raise:
−− Bad argument: if the network id is not valid.

procedure Set Contract granted capacity flag

(Contract : in out Fsf.Contract Parameters;
granted capacity flag : in boolean := true);

−− This operation returns the value of the granted capacity flag
−− in the contract parameters object designated by contract.

function Get Contract granted capacity flag

(Contract : in Fsf.Contract Parameters)
return boolean;

−− This operation is used to return spare capacity that was assigned to
−− a server but that cannot be used due to restrictions in other
−− servers of a distributed transaction. This operation changes the
−− cycle period and budget of the given server to the values given in
−− new period and new budget, respectively.
−− It may raise:
−− Bad argument: if the server does not have the granted capacity flag
−− set, if the new period is less than the current one, or if the
−− new budget is larger than the current one. It also raises this
−− exception if the new period is greater than the maximum period
−− currently specified in the contract associated to the server or,
−− similarly, if the new budget is smaller than the minimum budget
−− in the contract. It also raises this exception if the

51

IST-2001 34140 Deliverable WP2-SI5-V3

−− granularity is discrete and the new period and budget do not
−− match any of the period−budget pairs in the utilization set of
−− the server.

procedure set server capacity

(the server : in Fsf.server id;
New Period : in Ada.Real Time.Time Span;
New Budget : in Ada.Real Time.Time Span);

end Fsf.Distributed.Spare Capacity;

52

IST-2001 34140 Deliverable WP2-SI5-V3

C Private Part Reference

The private specifications of fsf and fsf.distributed are presented here as a ref-
erence implementation.

C.1 FSF private part

private

−− Maximum number of accepted contracts (servers)
Max N Servers : constant := 125 ;

−− Maximum number of tasks that may be scheduled by the framework
Max N Tasks : constant := 25 ;

type Utilization Set Array is

array (Positive U Index) of Utilization Value;

type Utilization Set is record

Size : U Index := U Index’First; −− ’
Value : Utilization Set Array;

end record;

type Critical Sections Array is

array (Positive CS Index) of Critical Section Data;

type Critical Sections is record

Size : CS Index := CS Index’First; −− ’
Value : Critical Sections Array;

end record;

type Shared Obj Handle is range 1 .. UINT32 MAX;

Null Utilization Set : constant Utilization Set

:= (Size => 0,
Value => (others => (C => Ada.Real Time.Time Span Zero,

T => Ada.Real Time.Time Span Zero)));

Null Critical Sections : constant Critical Sections

:= (Size => 0,
Value => (others => (Wcet => Ada.Real Time.Time Span Zero,

Obj Handle => Shared Obj Handle’First))); −− ’

type Contract Parameters is record

Budget Min : Ada.Real Time.Time Span := Ada.Real Time.Time Span Zero;
Period Max : Ada.Real Time.Time Span := Ada.Real Time.Time Span Zero;
Budget Max : Ada.Real Time.Time Span := Ada.Real Time.Time Span Zero;
Period Min : Ada.Real Time.Time Span := Ada.Real Time.Time Span Zero;
The Workload : Workload := Indeterminate;

53

IST-2001 34140 Deliverable WP2-SI5-V3

D Equals T : Boolean := False;
Deadline : Ada.Real Time.Time Span := Null Deadline;
Budget Overrun Signal : POSIX Signals.Signal := Null Signal;
Budget Overrun Signal Data : POSIX Signals.Signal Data

:= Null Signal Data;
Deadline Miss Signal : POSIX Signals.Signal := Null Signal;
Deadline Miss Signal Data : POSIX Signals.Signal Data

:= Null Signal Data;

The Granularity : Granularity := Continuous;
The Utilization Set : Utilization Set := Null Utilization Set;
The Quality : Quality := Quality’First; −− ’
The Importance : Importance := Importance’First; −− ’

The Preemption Level : Preemption Level

:= Preemption Level’First; −− ’
The Critical Sections : Critical Sections := Null Critical Sections;

Policy : Sched Policy := NONE;
The Network Id : Network Id := Null Network Id;
Granted Capacity Flag : Boolean := False;

end record;

−− type Server Id is new Natural range 0..Max N Servers;
type Server Id is range 0 .. UINT32 MAX;

−− Maximum number of synchronization objects that can be created and
−− exist simultaneously to be used by the application
Max N Synch Objects : constant := 5 ;

−− type SO Index is range 0..Max N Synch Objects;
−− subtype Positive SO Index is SO Index range 1..SO Index’Last; −− ’

−− type Synch Object Handle is new Positive SO Index;
type Synch Obj Handle is range 0 .. UINT32 MAX;

function To Signal Data is new

Ada.Unchecked Conversion (Integer, POSIX Signals.Signal Data);

Null Signal Data : constant POSIX Signals.Signal Data

:= To Signal Data (0);

−−
−− Other implementation dependent parameters
−−

−− The Ada implementation in MaRTE OS will use the Application−Defined
−− Scheduling Interface (proposed to the POSIX standardization
−− committee), to create a fixed−priority−based scheduler that

54

IST-2001 34140 Deliverable WP2-SI5-V3

−− operates under the rules of the FIRST scheduling framework.

−− In this implementation there are two special tasks:
−− − The application scheduler task, that implements the scheduler
−− − The service task, that is in charge of negotiating and
−− renegotiating contracts concurrently with the application

−− The following symbols are necessary to adapt the application to the
−− underlying fixed priority scheduler

−− Priority assigned to the application scheduler; it should be above
−− the priorities of the application tasks and of the service task,
−− and it should be at least 1 level below the maximum of the system
Scheduler Priority : constant System.Priority := 30 ;

−− Real−time signal number reserved for the application scheduler
−− to manage its timers.
Scheduler Signal : POSIX Signals.Signal;
−− it is not a constant now because
−− Scheduler Signal : constant POSIX Signals.Signal
−− it has to be assigned in the body
−− := POSIX Signals.Signal(SIGRTMIN);
−− The problem is that S I G R T M I N
−− is not a static value but a function

−− The highest priority that can be assigned to an application task,
−− it should be defined as one level less than the scheduler priority
Highest Thread Priority : constant System.Priority

:= 30 −1 ; −− 30 −1 ; −− Scheduler Priority−1;

−− The lowest priority that can be assigned to an application task,
−− it should be at least 1 level above the minimum of the system
Lowest Thread Priority :
constant System.Priority := 3 ;

−− Each call to the functions that negotiate or renegotiate a contract
−− or that change the quality and importance generates a request for
−− the service task that we call a service job. This job will be
−− pending in a queue until executed by the service task. The
−− following symbol represents the maximum number of requests that can
−− be simultaneously queued.
Max N Service Jobs :
constant := 125 ∗ 2 ; −− Max N Servers ∗ 2;

−− In order to bound the background activity of the scheduler (i.e.,
−− the admission tests necessary for the negotiation and
−− re−negotiation of contracts), a service task has been defined. It
−− runs at a given priority level and has a budget and period
−− assigned.

55

IST-2001 34140 Deliverable WP2-SI5-V3

−− Period of the service task (timespec)
Service Task Period : constant Ada.Real Time.Time Span

:= Ada.Real Time.”+”
(Ada.Real Time.To Time Span (Duration (0)),
Ada.Real Time.Nanoseconds (100000000));

−− Budget of the service task (timespec)
Service Task Budget : constant Ada.Real Time.Time Span

:= Ada.Real Time.”+”
(Ada.Real Time.To Time Span (Duration (0)),
Ada.Real Time.Nanoseconds (10000000));

−− Priority of the service task, it has to be lower than the
−− SCHEDULER PRIORITY, and is set according to its period and the
−− expected response times for reconfiguration or tunning of the system.
Service Task Priority :

constant System.Priority := 3 +1 ;

−− Maximum number of servers that can be simultaneusly waiting for being
−− signaled in a synchronization object
Max N Servers In Synch Object :

constant := 4 ;

−− Maximum number of events that can be pending to be
−− signaled in a synchronization object
Max N Events In Synch Object :

constant := 100 ; −− 254

−− Maximum number of pending replenishments in each sporadic server
Max N Pending Replenishments : constant := 250 ;

−− This function must be supplied by the user to map the preemption
−− level values given in the contracts for the servers, to priority
−− values in the range that is allowed by the present implementation
−− for application tasks. The value returned by the function must
−− fit in the interval defined by the constants:
−− [LOWEST TASK PRIORITY, HIGHEST TASK PRIORITY]

function Priority Map
(Plevel : in Preemption Level)
return System.Priority;

type Contracts Array is
array (Positive C Index) of Contract Parameters;

type Contract Set is record
Size : C Index := C Index’First; −− ’
Value : Contracts Array;

end record;

56

IST-2001 34140 Deliverable WP2-SI5-V3

Null Contract Parameters : Contract Parameters;

Null Contract Set : constant Contract Set
:= (Size => 0, Value => (others => Null Contract Parameters));

type Servers Array is
array (Positive S Index) of Server Id;

type Server set is record
Size : S Index := S Index’First; −− ’
Value : Servers Array;

end record;

Null Server set : constant Server set
:= (Size => 0, Value => (others => Server Id’First)); −− ’

type Target Windows Array is
array (Positive TW Index) of Target Window Data;

type table driven params is record
Size : TW Index := TW Index’First; −− ’
Value : Target Windows Array;

end record;

Null table driven params : constant table driven params
:= (Size => 0,

Value => (others => (The Start => Ada.Real Time.Time Span Zero,
the end => Ada.Real Time.Time Span Zero,
Comp Time => Ada.Real Time.Time Span Zero)));

subtype Hiearchical Module Supported is Boolean range False .. False;
subtype Distributed Module Supported is Boolean range True .. True;
subtype Distributed Spare Capacity Module Supported
is Boolean range False .. False;
subtype Spare Capacity Module Supported is Boolean range True .. True;
subtype Implementation Specific Module Supported
is Boolean range True .. True;
subtype Dynamic Reclaiming Module Supported is Boolean range False .. False;
subtype Shared Objects Module Supported is Boolean range True .. True;

−− Budget of the round robin slice (timespec) for the background
RR Slice CPU Time : constant Ada.Real Time.Time Span

:= Ada.Real Time.”+”
(Ada.Real Time.To Time Span (Duration (0)),
Ada.Real Time.Nanoseconds (100000000));

57

IST-2001 34140 Deliverable WP2-SI5-V3

C.2 FSF.Distributed private part

private

type unsigned 32 is range 0 .. Fsf.UINT32 MAX;

type Implementation Defined Node Address (Net : Network id) is record

case net is

−− when 1 => rt ep : unsigned 32; −− Implementation dependent
−− when others => null;
when others => default : unsigned 32;

end case;
end record;

type Implementation Defined Port Number (Net : Network id) is record

case net is

−− when 1 => rt ep : Natural; −− Implementation dependent
−− when others => null;
when others => default : Natural;

end case;
end record;

−− This operation is used by the implementation to convert the node
−− identification (used in the creation of a send endpoint) to the
−− specified network communication provider dependent address
function

get node address

(the network id : in Fsf.Network id := Fsf.Default Network id;
node : in Node address)
return implementation defined node address;

−− This operation is used by the implementation to get the local node
−− address as it is to be used by the communication provider in the
−− network specified
function

get local node address

(the network id : in Fsf.Network id := Fsf.Default Network id)
return Implementation defined node address;

−− This operation is used by the implementation to convert the port
−− number given in the creation of a receive endpoint to the
−− specified network communication provider dependent port
function

get port

(the network id : in Fsf.Network id := Fsf.Default Network id;
the port : in Port)
return Implementation defined port number;

−− This two types are indexes to internally created arrays with
−− the necessary information

58

IST-2001 34140 Deliverable WP2-SI5-V3

type Send endpoint is new Natural;

type Receive endpoint is new Natural;

59

