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1 Introduction

In this document we present the software architecture of the systems that we support and have developed in
the FIRST project.

After summarising the objectives of the project, Section2 gives an abbreviated short list of application
requirements addressed by the project. The complete list of requirements is listed in the requirementslist.pdf
document, available for download in the AF directory on the FIRST web site. A more detailed discussion
on the requirements will be presented in Deliverable D-AF1.v2.

We will then give an overview of the software framework in Section3. In Section4 we present the
service contractspecification, a key concept in our framework. In Section5, we describe how to analyse
the temporal behaviour of an application through thetemporal profile. In Section6, the underlying schedul-
ing model is discussed. In Section7 we describe in more details how the framework is supported by the
operating system mechanisms. Section8 presents our conclusions and Annex 1 describes the API reference
manual.

1.1 Objectives of the project

We report here the objectives of the project for easy reference. They are discussed in more details in
Deliverable D-EPrv.

1. To be able to compose different applications, each one with its own scheduler.

2. To be able to analyse an application/component/subsystem independently from the rest of the system.

3. To add robustness by providing protection from timing faults in a subsystem.

4. To be able to support and analyse diverse timing requirements.

5. To be able to support explicitly adaptive applications.

6. To be able to do the above things on distributed systems.

7. To provide schedulability analyses for the proposed algorithms.

8. Demonstrate the viability of the proposed solutions in real-case studies and operating systems.

9. To influence the relevant standards (POSIX, Ada) to support the primitives needed to implement the
proposed solutions.
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2 Application Requirements and Scheduler Flexibility

Key in FIRST is the concept of integration of complex applications with a variety of real-time requirements.
In particular, we cover a broad range of realistic application requirements and real-time behaviour, including
well-understood hard real-time behaviour as well as less well defined concepts of soft requirements. It is
noted that in many modern real-time systems, only a small fraction of the system could be considered to have
hard deadlines, yet most of the rest of the system might have important timing or performance requirements.

The coexistence and cooperation of different scheduling schemes is encouraged in the FIRST frame-
work; different applications with their own scheduling requirements and algorithms need to be integrated
together on one platform.

2.1 Application Characteristics

The following characteristics and requirements were obtained by performing a survey of industrial needs,
and summarise the application characteristics FIRST is attempting to support:

2.1.1 Scale

The range of products that are called ”real-time” is very diverse: from small embedded control systems,
digital multimedia devices, consumer electronics and image processing chips in cameras to guidance and
control systems for avionics. The platform for current systems ranges from small 16MHz microcontroller
systems to complex multiprocessor and heterogeneous operating systems. The software size varies con-
siderably, from below 1,000 lines of code to over 1,000,000. Production times vary from as little as one
man-month to tens of man-years.

2.1.2 Concurrency

Industrial experience reveals that small, hard real-time systems tend to have a constant number of processes,
typically less than 10, of which about half may be considered ’hard’.

Larger systems may have thousands of concurrent processes, but the number of processes is not constant.
For example, in a telecommunications system, when new connections are made, new processes are spawned
as necessary. These processes still have real-time requirements.

It appears that as systems grow in size, the amount of critical or hard real-time code does not grow in
proportion. The reason for this may be related to software growing at a faster rate than the hardware that it
is running on; and it is the hardware that has a large influence of the timing requirements for the system.

Large systems with a high proportion of real-time constraints are not as common as it seems (much of
the software is concerned with less time-critical functionality) although large control systems may consist
of a large number of fairly independent real-time activities.

2.1.3 Processors

According to industrial experts, there is a clear trend towards multi-processor solutions, even for smaller
systems. In the long term, the availability of inexpensive single chip computers and the ability to put
multiple custom processing cores on FPGA integrated circuits indicates the future will become distributed
on more and more processors.

3



IST-2001 34140 Deliverable D-SI.1v3

Current multiprocessor systems include a variety of heterogeneous cores including MIPS and TriMedia
cores with dedicated function blocks and weakly programmable function blocks. Many industrial control
systems are based on conventional industrial processors linked through field busses and ethernet networks.

2.1.4 Operating Systems and Scheduling

Fixed priority scheduling is common in industry. Also, various forms of deadline driven scheduling are
currently being used in industrial projects. A few other flexible scheduling schemes are being used in novel
situations, for example feedback based scheduling and schemes to manage overloads. Table-driven schedul-
ing, is often used, although usually in the form of a cyclic executive. Table-driven scheduling in FIRST
encompasses more than a simple cyclic executive; we regard table driven scheduling as an opportunity to
use better, but more costly, scheduling algorithms to prepare better schedules than can be performed with
simple algorithms like FP and EDF.

2.1.5 Real-time Behaviour

Industry has taken account of much real-time systems research: particularly, hard real-time theory is well
used. Notions such as deadlines and periods are common and worst case response time analysis is used for
analysis. Deadline-monotonic priority assignment for fixed priority scheduling is used extensively.

However, theory is ineffective in many systems. For example in larger systems where there are a dy-
namic number of processes, perhaps up to 1000 at a time, forms of worst case analysis are not appropriate
because the worst case is unlikely to occur; to ensure that all deadlines are met in the worst case leads to
very low utilisation. Also, the dynamic nature of such real-time systems means that it is difficult to use
much real-time systems theory because it is based on assumptions typically found in static systems (where
much is known about the future demands on the systems).

More fundamentally, notions such as ’deadline’ fail to specify requirements adequately, particularly in
a softer system where scheduling is a battle to maintain a high quality of service. In particular scenarios, it
may be important to ensure low latency, in others it is more important to exhibit low jitter. Further, in many
cases industry does not know how to describe or measure quality of service.

A bounded and known worst case execution time is taken for granted in almost all theoretic work.
However, determining a suitable value for this is extremely difficult; previous approaches tend to be very
pessimistic; worst case assumptions are made at every stage of analysis, resulting in a figure that although
’safe’, is much higher than any worst case scenario achieved at run-time. Execution-time profiling, where
a probability distribution of execution time is derived is a promising technology for FIRST, allowing an
application to budget for (say) 95% of its expected executions (hence achieving timeliness in at least 95%
of cases) and hoping to reclaim additional capacity at run-time.

2.2 Application Requirements

We will now provide a list of application requirements that have been derived from the application charac-
teristics and were taken into account in the design of the FIRST scheduling framework.

These requirements are high-level concepts and the reader should be aware that inclusion in this list
does not imply that a particular characteristic is supported directly by on-line mechanisms. Instead, partic-
ular application requirements are managed by a combination of off-line analysis and configuration, on-line
acceptance testing and on-line scheduling. For example worst case execution time analysis would generally
be performed off-line, worst case response time analysis may be performed on-line or off-line depending on
the application.
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1 Multiple Applications/Components. The ability of the system to support running multiple applications
or components at the same time.

1.1 Composability. The ability to compose together separate applications or application components
with their own timing requirements and schedulers.

1.2 Shared Resources. To be able to deal effectively with resources shared between applications or
components. Specifically with mutually exclusive critical sections.

1.3 Distribution. To support distributed applications, specifically with static allocation of processes
to nodes (process migration introduces complex timing effects).

2 Contract Support. Regardless of the underlying scheduling mechanism, the operating system provides
a consistent API to the applications. The overall scheme is ’contract based’ where the application and
operating system agree on various real-time parameters such as required processing time, etc. Then,
once accepted, the contract forms the basis of the application’s access to the CPU.

2.1 Online acceptance test. It is a parameter of the system (not the contract) whether or not on-line
acceptance tests are done. It is expected that suitable analysis is done either off-line (in which
case, an on-line acceptance test may not be needed), on-line in the case of open systems or
adaptive systems, or some combination of off-line analysis and on-line acceptance test.

2.2 Job Model. The contract model is based on two kinds of workloads: some behave as a ’stream
of jobs’, and others as indeterminate workloads. A stream is a (possible infinite) sequence of re-
lated jobs. A job is an instance of execution. Parameters such as how often jobs need doing, how
long they take and guarantees of completion are part of the contract. For indeterminate work-
loads it may not possible to distinguish separate jobs, but a certain amount of system processing
resources must be allocated to them anyway.

3 Periodicity. This concerns how often jobs ’arrive’ for processing. The framework will support the
following types of periodicity:

3.1 Periodic. Every period T, execution is required.

3.2 Sporadic. Execution is required with a minimum inter-arrival time.

3.3 Bursty. Execution is required in bursts; some bound can be placed on the nature of the bursts.

3.4 Continuous scale. It is useful for the period to change over a continuous scale, between two
limits. It follows the elastic task model [5].

3.5 Discrete scale. It is useful for the period to change to any of a set of discrete values.

3.6 Unbounded. There is no bound on the arrival time of jobs, however it is useful and expected that
there will be some other measure of how often jobs are required, such as a random distribution
with known parameters.

4 Resource usage. This concerns how much processing time each job requires. The framework will
support applications which may specify their requirements for resource usage in the following ways:

4.1 Minimum execution time required per job invocation. This is to be guaranteed by the system.

4.2 Continuous scale. It is useful for the budget of CPU time allocated to vary over a continuous
scale between two limits. This follows the elastic task model.
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4.3 Discrete scale. It is useful for the budget of CPU time allocated to change to any of a set of
discrete values.

4.4 Execution time variability. The execution time of most processes has a wide natural variation.
The framework recognises this and provides support. In particular, a combination of off-line
analysis and slack reclamation may be used.

4.5 Unlimited. The process will happily use any available CPU time available. Weights and Impor-
tance metrics are used to schedule competing processes.

5 Performance and Guarantees. This section relates to the general area of supporting deadlines, quality
of service and application-specific control of resource usage.

5.1 Resources for stream-based workloads. The job is informed of how much time it has been
allocated in this instance. Once informed, this is a guaranteed minimum that the job will receive.
The job may indicate at run-time that no further useful processing may be done, so that any
unused capacity can be dynamically reassigned.

5.2 Resources for indeterminate workloads. The processes in this workload may usefully use any
extra time that it has been allocated up to a stated maximum. It should be possible to know how
much processing time there is left (at least) in the current server period.

5.3 Importance/weight. A two tier hierarchy is supported for allocation of resources. This is to
accommodate a structured best-effort approach to maintaining an application level quality of
service.

5.4 Importance. This is the highest layer on the hierarchy. A job of high importance is more impor-
tant than an infinite number of jobs of lower importance.

5.5 Weight. Within an importance level, jobs may compete for spare resources (above any minimum
guarantee) by specifying a weight. Weight may be adjusted.

5.6 Deadline Guarantees. The framework will support deadline-based guarantees. Note that sup-
porting deadlines may involve off-line work, rather than on-line acceptance tests. Although the
current framework only supports hard deadlines, it is also possible to make analysis on proba-
bilistic guarantees and N-in-M guarantees, by performing off-line analysis based on the service
contract model.

6 Change Management. This concerns the ability of an application to change its requirements at runtime
or join a system.

6.1 Renegotiation. An application may renegotiate its contract. Note that in some systems, it may
not be possible for the operating system and the application to agree on a new contract.

6.2 Negotiation time. The time taken to negotiate a contract must be adjustable and acceptably
small.

6.3 Open System. A system may be ’open’ with respect to applications. This means that unknown
applications may attempt to join the system and negotiate a contract.

6.4 Closed System. A system may be ’closed’ with respect to applications. This means that only
known applications may join the system. A system is still closed if not all characteristics are
known about the application.

7 Dependability. This section considers the temporal semantics in the case of contracts being broken.
This applies particularly to applications breaking their contract.
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7.1 Robustness and Isolation. The operating system will prevent applications from suffering due to
other applications overrunning for example. A system of budgets is used to enforce this.

2.3 System Level Integration

Systems consisting of applications which change their timing behaviour over their lifetime are common.
The timing behaviours change either because of software changes, mode changes, data-dependencies, in-
put/output traffic levels, and other causes. These place a requirement on the scheduling system to be able
to respond to these changes. A key concept in the FIRST framework is a ’contract’ between the application
and the scheduler. Contracts can be negotiated at initialization, when requirements change, or when new
software is added to the system, regardless of whether or not the applications are previously known to the
system. The time to complete a negotiation must be adjustable by assigning specific system resources to
the part of the system making them. Integration of different applications with different local scheduling
schemes is important for supporting component-based methodologies as well as for integrating legacy code
into systems based on the FIRST framework. To protect existing contracts and ensure that applications
are sensitive to time-domain failures, it is clear that the operating system must be capable of enforcing the
timing behaviour of applications, even if the application attempts (by accident or maliciously) to exceed its
contracted behaviour.

3 Overview of the software framework

The main objective of this project is to be able to compose different applications, each one with its own
scheduler, in the same system (Objective 1). Thus, the basic unit of composable object in our framework
is the application. An application is defined as a set of tasks with a scheduler. Since this definition is
quite general, and since our framework can eventually be used for component-based design of real-time
systems, we sometimes will use the termscomponentandsubsysteminstead ofapplication, which are also
more appropriate for distributed systems. An application can also consist of only one task: in that case the
application scheduler can be very light. An application is viewed as a stream of essentially repetitive work.
Some applications will be strictly periodic but others will have more elastic parameters.

Since different applications in the same system can have different schedulers, we will adopt a hierarchi-
cal scheduling structure. Aglobal schedulerselects which application is executed at each time, and thelocal
application’s schedulerwill select which task is executed. In principle, it is possible to compose schedulers
at any level of the hierarchy. Thus, an application can be composed of many sub-applications, each one with
its own scheduler. However, in this document we will address only two-level hierarchies. The two-level
hierarchy appears to be enough for most application domains. In Figure1, an example of a hierarchical
system that consists of three applications is shown.

As discussed in the previous section, the application’s tasks can have diverse timing requirements.
Therefore, by using this hierarchical structure, each application can be developed using the most appro-
priate scheduling strategy that best meets the application requirements (Objectives 4 and 5).

Although in general it is possible to use any scheduling algorithm as the global scheduler, we will build
our hierarchical framework on server-based algorithms. All servers have the general property of protecting
the processing resource so that applications do not execute for more than has been agreed. Server capacity
is replenished following a process defined for that server algorithm - one of the main differences between
servers is their replenishment algorithm. Note that servers can be built on fixed priority or EDF schedulers.

Each application is assigned one or more servers, and each server is assigned a fraction of the processor
bandwidth. These algorithms, also referred to asresource reservation algorithms, provide temporal pro-
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Figure 1: Hierarchy of schedulers.

tection between applications. Each application executes as if it were on aslower virtual processor, and
therefore may be analysed independently from the other applications in the system. This approach is com-
pliant with Objective 2 (independent analysis) and Objective 3 (temporal protection). Where an application
uses two or more servers then it is devolving some of its local scheduling behaviour to the global scheduler.
In the extreme each task of an application could execute on its own server on the global scheduler.

However, we do not want to restrict our analysis to a specific server algorithm, nor to any specific global
scheduling algorithm. Therefore, we identified a class of properties that can be provided by most of the
server algorithms presented in the literature. In our framework, the application and the global scheduler
communicate by means of theservice contract. Each applicationproposesa contract to the system with
certain parameters. If the contract can be fulfilled by the global scheduling strategy, then the application is
admitted into the system.

Many applications are adaptive, i.e. they change their requirements and their behaviour depending on the
amount of available resources. Many other applications change their requirements at run-time, depending
on their input data or on some state variable. In order to support these kinds of applications (Objective 4
and 5), the service contract is flexible and the server parameters can be changed on-line depending on the
applications requirements. Also, the application will be informed on the minimum amount of resources
available, so that it can adjust its own internal behaviour. The service contract will be discussed in more
details in Section4.

Our framework explicitly addresses two kinds of system. In anopen system, applications can dynam-
ically arrive in the system and ask for execution. In this case, the application goes through anon-line
admissionphase. In astatic systemall applications and their arrival times are known during design phase.
Therefore, the design of the system includes anintegrationor configuration phase, where a global schedu-
lability analysis is performed to check if all applications can coexist in the system. In an open system
applications will complete and leave the system thereby freeing up resources for future applications.

The design flow of an application is shown in Figure2. It consists of five steps:

Application Design In this phase, the application is designed and a local scheduling algorithm is chosen
for it. Any scheduling algorithm can be used, so the application designer can choose the algorithm
that best fulfils the application requirements. The user should design the application without con-
sidering the presence of other applications in the system. However, some care should be taken in
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Figure 2: Design flow of an application.

deciding which resources areprivate to this application and which might besharedwith other ap-
plications. The interaction between applications is only considered during the integration phase (or
on-line admission).

Temporal Profiling The temporal behaviour of the application is analysed and described using a precise
mathematical formalism. This phase is used to simplify the integration process and should be per-
formed with the help of an appropriate analysis tool. In particular, the output of this phase is a
temporal profile, i.e. a mathematical description of the temporal characteristics of the application,
including its “interface” with the other applications. The temporal profile is independent of the under-
lying server mechanism that will be used for executing the application. It can be used as a synthetic
description of the temporal characteristics of the application, and it is very useful for re-use. For
relatively straightforward applications temporal profiling will not be needed as it will be possible to
move directly from Application Design to Contract Computation.

Contract Computation This phase is used to compute the characteristics of the contract that the applica-
tion should be assigned in order to fulfil its requirements. Should the application involve complex
constraints, which cannot be handled efficiently at run-time directly, complexity reduction methods
can be applied in that phase which translate these constraints for efficient runtime use, however, in a
suboptimal way.

The contract is only negotiated (for an open system) when the application arrives (not on each invo-
cation of its stream of work). However renegotiation will be possible when application characteristics
change.

Off-line Integration / On-line admission Once the contracts for all applications have been computed, we
can integrate all applications in the same system. This integration phase can be done off-line or on-line
and it consists of a schedulability analysis of the servers that implement the service contracts. If it is
done off-line, this schedulability analysis can be complex, in order to optimise the system resources.
If the integration phase is not successful, the system designer is informed and it is necessary to go
back and modify some of the design choices. In the on-line case, integration is done by an admission
test. Since this is done on-line, it must be simple and fast. Therefore, it will initially be based on an
utilisation test. If the admission test is not successful, again the system is informed and can take some
relevant action.

On-line Adaptation The server parameters can be modified at run-time, depending on many factors as the
amount of free resources, the actual requirements of the application, etc. However, the amount of
allowed modifications should never compromise the service contract. In order to support adaptive
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7

2.3 System Level Integration

Systems consisting of applications which change their timing behaviour over their lifetime are common.
The timing behaviours change either because of software changes, mode changes, data-dependencies,
input/output traffic levels, and other causes. These place a requirement on the scheduling system to be
able to respond to these changes.

A key concept in the FIRST framework is a ‘contract’ between the application and the scheduler. Con-
tracts can be negotiated at initialization, when requirements change, or when new software is added to
the system, regardless of whether or not the applications are previously known to the system. The time
to complete a negotiations must be adjustable by assigning specific system resources to the part of the
system making them. Integration of different applications with different local scheduling schemes is im-
portant for supporting component-based methodologies as well as for integrating legacy code into sys-
tems based on the FIRST framework.

To protect existing contracts and ensure that applications are sensitive to time-domain failures, it is clear
that the operating system must be capable of enforcing the timing behaviour of applications, even if the
application attempts (by accident or maliciously) to exceed its contracted behaviour.

3 Service contracts
The service contract is the mechanism that we have chosen for the application to dynamically specify its
own set of complex and flexible execution requirements. From the application’s perspective, the require-
ments of an application or application component are written as a set of service contracts, which are ne-
gotiated with the underlying implementation. To accept a set of contracts, the system has to check as part
of the negotiation if it has enough resources to guarantee all the minimum requirements specified, while
keeping guarantees on all the previously accepted contracts negotiated by other application components.
If as a result of this negotiation the set of contracts is accepted, the system will reserve enough capacity
to guarantee the minimum requested resources, and will adapt any spare capacity available to share it
among the different contracts that have specified their desire or ability for using additional capacity.

As a result of the negotiation process, if a contract is ac-
cepted, a server is created for it. The server is a software
object that is the run-time representation of the contract; it
stores all the information related to the resources currently
reserved for that contract, the resources already con-
sumed, and the resources required to handle the budget
consumption and replenishment events in the particular
operating system being used. Figure 1 shows the relation-
ship between the service contract in the application side,
and the server in the underlying implementation

The system may be configured to perform an on-line
schedulability analysis test at negotiation time. If the test
is enabled, a new contract set is accepted only if the new
system situation passes the test. However, because on-line
tests may be suboptimal, for static systems it is also pos-
sible to perform a more exact off-line schedulability anal-
ysis test, and disable the on-line analysis. In that case, a
contract set will always be accepted.

Because there are various application requirements speci-
fied in the contract, they are divided into several groups,
also allowing the underlying implementation to give different levels of support trading them against im-
plementation complexity. This gives way to a modular implementation of the framework, with each
module addressing specific application requirements. The minimum resources required by the applica-

Figure 1. Contract negotiation process
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Figure 3: Contract negotiation process

applications, every application is informed of the amount of available resources for the next instance.
It can then use this information to adapt its requirements to the available resource. This is particularly
useful for anytime algorithms and imprecise computation.

4 Service contract

The service contract is the mechanism that we have chosen for the application to dynamically specify its own
set of complex and flexible execution requirements. From the application’s perspective, the requirements
of an application or application component are written as a set of service contracts, which are negotiated
with the underlying implementation. To accept a set of contracts, the system has to check as part of the
negotiation if it has enough resources to guarantee all the minimum requirements specified, while keeping
guarantees on all the previously accepted contracts negotiated by other application components. If as a result
of this negotiation the set of contracts is accepted, the system will reserve enough capacity to guarantee the
minimum requested resources, and will adapt any spare capacity available to share it among the different
contracts that have specified their desire or ability for using additional capacity.

As a result of the negotiation process, if a contract is accepted, a server is created for it. The server is a
software object that is the run-time representation of the contract; it stores all the information related to the
resources currently reserved for that contract, the resources already consumed, and the resources required
to handle the budget consumption and replenishment events in the particular operating system being used.
Figure3 shows the relationship between the service contract in the application side, and the server in the
underlying implementation

The system may be configured to perform an on-line schedulability analysis test at negotiation time. If
the test is enabled, a new contract set is accepted only if the new system situation passes the test. However,
because on-line tests may be suboptimal, for static systems it is also possible to perform a more exact off-
line schedulability analysis test, and disable the on-line analysis. In that case, a contract set will always be
accepted.

Because there are various application requirements specified in the contract, they are divided into several
groups, also allowing the underlying implementation to give different levels of support trading them against
implementation complexity. This gives way to a modular implementation of the framework, with each mod-
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ule addressing specific application requirements. The minimum resources required by the application to be
reserved by the system are specified in the core module. The requirements for mutual exclusive synchro-
nization among parts of the application being scheduled by different servers or among different applications
are specified in the shared objects module. Flexible resource usage is associated with the spare capacity and
dynamic reclamation modules. The ability to compose applications or application components with sev-
eral threads of control, thus requiring hierarchical scheduling of several threads inside the same server are
supported by the hierarchical scheduling module. Finally, the requirements of distributed applications are
supported by the distributed and the distributed spare capacity modules. We will now explain these modules
together with their associated application requirements.

4.1 Core

The core module contains the service contract information related to the application minimum resource
requirements, the operations required to create contracts and negotiate them, and the underlying implemen-
tation of the servers with a resource reservation mechanism that allows the system to guarantee the resources
granted to each server. The application requirements specified in the core module are shown in Table1.

Name Description

minimum budget Minimum execution capacity
per server period

maximum period Maximum server period
workload Whether the workload running

on the server is bounded
or indeterminate

deadline The deadline of the server
D=T Whether the servers deadline

is equal to the period or not
budget overrun signal The mechanism to get notification

of a possible budget overrun
for bounded workloads

deadline miss signal The mechanism to get notification
of a possible deadline miss
for bounded workloads

Table 1: Core attributes

The basic application requirements are the minimum budget and maximum period of the server. The
server will guarantee that every period, the part of the application running on it will get, if requested, at least
the minimum budget.

Another important timing requirement is the server’s deadline. The server guarantees that a piece of
work of size less than or equal to the minimum budget and requested for a server with full capacity will
be completed by the server’s deadline. Since the period may be adjustable, it is possible to specify that the
deadline is equal to the period.

The workload attribute describes two fundamentally different models of the work that the server has to
manage. The first model is the bounded workload, in which the application can bound the amount of work
that it requests during an interval equal to the server’s period. We call this work a job. In this model, it is
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possible for an application to tell the system that it has completed the current job (thus allowing the system
to make its current available budget equal to zero), and that it should be awakened by the system at the
beginning of the next job. If requested, the system can notify the application about a job overrunning its
budget, or missing its deadline. This is the preferred approach for periodic of sporadic tasks running on top
of an FSF server.

The framework provides the ability to awaken a bounded workload job in two different ways: timed, or
event driven. The timed wake up is achieved with the use of a timer or some OS timing mechanism, but
the event driven mechanism requires a synchronization object that is managed by the FSF. Consequently, a
mechanism exists to create such synchronization objects, and to signal them to awaken a bounded workload
waiting upon it. In both cases, timed or event-driven, the new job will only be started after the server’s
budget has been replenished at the next server’s period.

The second workload model is called indeterminate, and represents the case in which the application
cannot make any guarantees over the amount of work requested to be executed inside a server period. In this
case, the server guarantees the minimum budget, and defers further execution to a next period, if required
to guarantee the execution of the other servers in the system. There is no budget overrun or deadline miss
notification in this case, because there is no concept of a job.

Some application parts may not have any real-time requirements but may just want to run when the
system is not busy running real-time activities. For this purpose we provide the ability to run activities in the
background, in a round-robin fashion, and with no time guarantees. It is possible to specify it by creating
a special background contract. Background contracts are defined by specifying abudget min and period
max of zero

With the described services, the core module provides support for the basic timing requirements of real-
time applications, including the ability to reserve and have guarantees on execution time budgets, the ability
to specify arbitrary deadlines, and to detect budget overruns or deadline misses. This is done independently
of the underlying scheduler; for instance, we could have fixed priorities with sporadic servers [25], or EDF
with constant bandwidth servers underneath [1].

4.2 Shared objects

It is common for applications to have to share data or other resources in a mutually exclusive way with other
applications or concurrent parts of the same application. Most real-time synchronization protocols are able
to bound the delay that an application may experience due to the use of shared objects, but nevertheless this
delay exists and must be taken into account by the schedulability test.

The shared objects module of FSF allows the application to specify in the contract attributes all the
information required to do the schedulability analysis. Table2 shows the attribute related to shared objects
that can be specified as part of a service contract.

Name Description
list of critical sections Each critical section

has a reference to the
shared object and its
worst case execution time

Table 2: Shared object attributes

The set of shared objects present in the system together with the lists of critical sections specified for each
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contract are used for schedulability analysis purposes only. A run-time mechanism for mutual exclusion is
not provided in FSF for two important reasons. One of them is upward compatibility of previous code using
regular primitives such as mutexes or protected objects (in Ada); this is a key issue if we want to persuade
application developers to switch their systems to the FSF environment. The second reason is that enforcing
worst case execution time for critical sections is expensive. The number of critical sections in real pieces of
code may be very high, in the tens or in the hundreds per task, and monitoring all of them would require a
large amount of system resources.

The FSF application does not depend on any particular synchronization protocol, but there is a require-
ment that a budget expiration cannot occur inside a critical section, because otherwise the blocking delays
could be extremely large. This implies that the application is allowed to overrun its budget for the duration,
at most, of the critical section, and this extra budget is taken into account in the schedulability analysis.

4.3 Spare capacity

Many applications have requirements for flexibility regarding the amount of resources that can be used. The
spare capacity module allows the system to share the spare capacity that may be left over from the nego-
tiation of the service contracts, in a static way. During the negotiation, the minimum requested resources
are granted to each server, if possible. Then, if there is any extra capacity left, it is distributed among those
applications that have expressed their ability to take advantage of it.

Name Description

granularity indicates how we can make
use of extra capacity:
continuous or discrete
utilization values

maximum budget maximum usable budget
minimum period minimum useful period
utilization set set of pairs budget,period

used for discrete granularity
importance a fixed priority used to

distribute extra capacity
quality a relative number used to

distribute extra capacity
among servers of the same
importance

Table 3: Spare capacity attributes

Table3 shows the service contract attributes related to the spare capacity. There are two ways of making
use of spare capacity, described with thegranularityattribute. In thecontinuousgranularity, the application
is able to make useful work for any value of budget between theminimumand themaximum budget, and
for any period between themaximumand theminimum period. The case of continuous budget, for instance,
corresponds to anytime algorithms, while the continuous period corresponds to an iterative algorithm, for
instance a video display process, in which the quality increases with the frequency of execution.

Thediscretegranularity is designed for n-version algorithms that can run different versions with different
quality levels, each with a different value of budget per period. The possible values are described in the
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contract through theutilization setattribute.
The method to distribute the spare capacity is based on two numeric values called theimportanceand

quality. The importance is a small integer like a fixed priority: a higher importance server will get all
the available spare capacity before any lower importance server. If there are servers of the same importance
level, they share the extra capacity proportionally to their quality value: the share that they get is proportional
to their value divided by the total quality for their importance level.

The distribution of spare capacity is made every time there is a negotiation, a renegotiation, or just a
change of quality and importance. The values assigned to each server are reported to them, so that they can
use the information to know how to run. The assigned capacity is guaranteed until the next negotiation or
change.

4.4 Dynamic reclamation

This module is used to dynamically reclaim any execution capacity that is not used by the different servers,
so that it can be assigned to other servers that can make use of it. The application requirements are similar
to spare capacity sharing, except that the application only knows that it has some additional budget later
during its server period. Therefore, this reclamation is appropriate for anytime algorithms (i.e., continuous
granularity servers) and is inappropriate for n-version algorithms which must know the version to run from
the beginning of the current instance.

Dynamic reclamation is a difficult scheduling problem that is not completely solved. If new dynamic
reclamation techniques become available in the future, the FSF can immediately take advantage of them
because all the information on how the application can make use of it is already in the service contract.
Because this module shares its application requirements with the spare capacity module, it has no contract
server attributes of its own.

4.5 Hierarchical scheduling

One of the application requirements that FSF addresses is the ability to compose different applications,
possibly using different scheduling policies, into the same system. This can be addressed with support in the
system for hierarchical scheduling. The lower level is the scheduler that takes care of the service contracts,
using an unspecified scheduling policy (for instance, a CBS on top of EDF, or a sporadic server on top of
fixed priorities). The top level is a scheduler running inside one particular FSF server, and scheduling the
application threads with whatever scheduling policy they were designed. In this way, it is possible to have
in the same system one application with, for example, fixed priorities, and another one running concurrently
with an EDF scheduler.

We have chosen to provide the top-level schedulers inside the FSF implementation because it is simpler
than having a specific API for the application to develop its own scheduler. We are currently providing three
top-level schedulers: fixed priorities, EDF, and table-driven. The service contract attributes associated with
the hierarchical scheduling module are shown in Table4.

For thescheduling policyattribute the allowed values are fixed priorities, EDF, table driven, andnone.
The latter case corresponds to a server with no top-level scheduler, that only allows one thread to be bound
to it.

The scheduler init infoattribute is scheduler-dependent information. For fixed priorities or EDF it is
empty, and for table-driven scheduling it contains the table with the schedule.

In addition to the server’s attributes each thread that is bound to the server has its ownscheduling
parameters, that depend on the particular scheduling policy. For instance, they have a priority for fixed
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Name Description

scheduling policy This is an identifier for the
top-level scheduling policy

scheduler init info Scheduling-policy-dependent
information that is supplied
at server initialization
time

Table 4: Hierarchical attributes

Name Description

network id Identifies the network for
which the contract is negotiated;
if null, the contract is
negotiated on a processing
node

Table 5: Distributed core attributes

priorities, or a relative deadline for EDF.

4.6 Distribution (core)

FSF is designed to support applications with requirements for distribution. The first step towards distribution
is the ability to support service contracts for the network or networks used to interconnect the different
processing nodes in the system. Similar to the core FSF module, the contracts on the network allow the
application to specify its minimum utilization (bandwidth) requirements, so that the implementation can
make guarantees or reservations for that minimum utilization. We use the same contract that is used for
processing nodes, and thus the core attributes for distribution are the same as for the core FSF, described in
Table1, with the addition of thenetwork idattribute (see Table5), that identifies the contract as a network
contract for the specified network. The default value for thenetwork idis null, which means that the contract
applies to the processing node where the contact is negotiated.

For the FSF implementation to keep track of consumed network resources and to enforce the budget
guarantees it is necessary that the information is sent and received through specific FSF services. To provide
communication in this context we need to create objects similar to the sockets used in most operating
systems to provide message communication services. We call these objectscommunication endpoints, and
we distinguish send and receive endpoints.

A send endpointcontains information about the network to use, the destination node, and the port that
identifies a reception endpoint. It is bound to a network server that specifies the scheduling parameters of
the messages sent through that endpoint, keeps track of the resources consumed, and limits the bandwidth
to the amount reserved for it by the system. It provides message buffering for storing messages that need to
be sent.

A receive endpointcontains information about the network and port number to use. It provides message
buffering for storing the received messages until they are retrieved by the application. A receive endpoint
may get messages sent from different send endpoints, possibly located in different processing nodes.
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4.7 Distribution (spare capacity)

In the distributed FSF we want to provide the same level of support for spare capacity sharing that is provided
for processing nodes. This is a difficult task in the case of a distributed system, because the decisions
made in one node may affect another one, requiring distributed consensus. For example, a distributed
transaction may have several activities executing in different processing nodes. One of them is periodic, and
the others are activated by the arrival of a message from the preceding activity. Therefore, the latter activities
inherit the period of the first activity (with the additional jitter introduced by the processing and message
transmission). If the transaction allows a continuous scale of periods between some minimum and maximum
values, separate negotiations in the network and in the different processing nodes will most probably result
in different periods because the spare capacity is different in each node. Since the transaction cannot run
with different periods, there needs to be some renegotiation to change the period to the maximum obtained
(representing the minimum resource consumption). During this renegotiation things might have changed,
requiring further renegotiation rounds.

We do not want to embed all this complexity into the FSF implementation. Therefore, we have chosen to
give a minimum support for spare capacity distribution inside FSF, and leave the consensus problem to some
higher-level manager that would make the negotiations for the application. For this purpose, there is a new
attribute in the service contract called thegranted capacity flag(see Table6), which has the implication that
the period or budget of the server can only change if a renegotiation or a change of quality and importance
is requested for it; it may not change automatically, for instance because of negotiations for other servers.
This provides a stable framework while performing the distributed negotiation. For a server with the granted
capacity flag set, there is an operation to return spare capacity that cannot be used due to restrictions in other
servers of a distributed transaction.

Name Description

granted capacity flag Once the negotiation is finished,
the first values for the
budget and period given to
the server must not change
automatically

Table 6: Distributed spare capacity

4.8 The Service Contract API

We refer to Appendix 1 for a complete description of the Service Contract API.

5 Temporal profile of an application

Describing the temporal characteristics of an application can be difficult, especially if the application shows
complex timing constraints and custom scheduling algorithms. We are seeking a uniform method for de-
scribing the temporal requirements of any application that abstracts most of the internal details. We call this
abstract description theapplication’s temporal profile.

Temporal profiles are translated into service contracts, which are then subjected to global scheduling
servers. Temporal profiles and contracts are system independent, while the servers are system specific. As
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Figure 4: Demand bound function and server’s available time for the example’s application.

such, the profiles define the boundary between system independent application description and their system
specific execution. Via temporal profiles, applications can be reused or executed on different platforms —
with the same temporal behaviour — only by providing appropriate global scheduling servers.

Temporal profiles are important because there is not a unique service contract that fulfills the application
requirements. Consider the following example.

Example. Consider an applicationA1 consisting of two periodic tasks:τ1 with C1 = 2 ms, D1 = 8 ms
andT1 = 10ms; andτ2 with C2 ms andD2 = T2 = 6, with an EDF local scheduler. A necessary and
sufficient condition for the application to be schedulable is that in every interval[t1, t1 + ∆t] the amount of
available execution time is not less than the demand of the application:

∀t1,∆t avail(t1, t1 + ∆t) ≥ D(t1, t1 + ∆t) =
∑

ai,j≥t1, di,j≤t1+∆t

ci,j

whereai,j , di,j andci,j are the arrival times, the deadlines and the computation times of all the application’s
jobs.

The demand of the application is shown in Figure4 as a thick line. In the same figure, is plotted the
available time provided by a periodic server withCs = 3, Ds = 5 Ts = 6 with a dashed line. Many other
servers can successfully support the above application. For example, the same application can be supported
by a periodic server withCs = 4, Ds = 4 andTs = 9. Note that all that is necessary to analyse the
application and compute the server parameters is the demand function.

When considering applications with other local schedulers, the profile function depends also on the
adopted scheduling algorithm, but has a similar form. Preliminary results on the temporal profile of an
application with a local fixed priority scheduler can be found in [16].

Therefore, we propose to use a similar formalism for describing the application. The temporal profile
consists of one or more demand bound functions that describe the requirements of the application.

Temporal profiles can be used in areactivemanner, i.e., by analysing the temporal behaviour of applica-
tion and scheduler, as well asproactive, i.e., by taking a profile as input and ensuring that the local scheduler
will keep executions within the profile.
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The temporal behaviour of the application is analysed and described using a precise mathematical for-
malism. Applications with constraints following a basic period, deadline model will not require special
temporal profiling, as service contracts can be derived directly from the application parameters. More com-
plex applications will need more elaborate analysis methods, which will be carried out by special tools.

6 Global scheduling

In standard single processor systems with standard scheduling schemes, a single scheduler decides which
task to execute at what time, from of a set of those ready: all tasks compete for the CPU and are arbitrated
by a single scheduler, who has complete control over the CPU. Our framework enables the coexistence of
a number of applications and their schedulers, while maintaining for each application the view that it is
executing alone on the CPU, with a certain approximation. The approximation comes from the fact that the
global scheduler may introduce some (bounded) delay, which depends on the contract parameters.

Thus, each application can choose the scheduler best suited for its timing requirements. The presence of
other applications and schedulers is reflected as the CPU appearing slower, and having additional predictable
delays.

To maintain the view of exclusive CPU control to application, the following has to be ensured:

(i) enough CPU resources are available to each application;

(ii) applications are protected from each other.

This is provided by the global scheduler which (i) provides sufficient access to the CPU for the assigned
servers to meet the temporal profile of an application and (ii) enforces temporal profiles, e.g., protecting
from overruns.

The global schedulers used in our framework will be based on a class of scheduling algorithms called
servers. These algorithms were initially proposed for minimising the response time of aperiodic tasks in
hard real-time periodic system. In these models, one server in the system is in charge of executing one
or more aperiodic tasks. The server is characterised by abudget(or capacity),C, and by aperiod, T .
Intuitively, the server guarantees that the served tasks are allowed to executeC units of time every interval
of T units of time.

Server algorithms exist both for fixed priority and dynamic priority algorithms, and can in theory even
be implemented on time triggered systems. Examples of servers for fixed priority scheduling are the Polling
Server, the Deferrable Server and the Sporadic Server [20], and the Processor Capacity Reserve [17, 18].
Examples of servers for earliest deadline first are the Dynamic Sporadic Server, the Total Bandwidth Server
[21] and the Constant Bandwidth Server [3]. The Total Bandwidth server has also been combined with the
Slot Shifting algorithm by Isovic and Fohler [12] for servicing aperiodic tasks in Table Driven Schedules.

All these servers have the general property of protecting the processing resource so that tasks do not
execute for more than has been agreed. This property, referred astemporal protection, is considered very
important so that a misbehaving task does not affect the guarantees on the other tasks in the system. There-
fore the server approach has been extended to the entire system. In theresource reservation framework[18]
each task is assigned a server. Hard real-time tasks are assigned a server with capacity not lower than their
worst case execution time and period not greater than their minimum inter-arrival time. Soft real-time tasks
are assigned a server with capacity based on some other measure such as a probabilistic execution time
profile.

Recently, many server algorithms have been extended to hierarchical scheduling systems. Deng and
Liu [8, 7] proposed to use the total bandwidth server of Spuri [21] to serve an application with its own local
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scheduler. Saesong et. al. [19] extended the resource reservation framework so that each server can schedule
applications with a local fixed priority scheduler, and propose a schedulability test for the application based
on response time analysis. In the first phase of this project (see deliverable SI.4v1 and [16]), Lipari and Bini
proposed a schedulability analysis for applications with a local fixed priority scheduler that is independent
of the server algorithm. This analysis can also be used for computing the server parameters that fulfill the
application requirements.

Server algorithms are defined for particular scheduling schemes, such as fixed priority or EDF. In order
to keep our framework independent of specific scheduling schemes, we introduce an interface between
applications and the global scheduler, called the service contract. A set of properties which are supported
by most current server algorithms has been identified, detailed in section4. So instead of using parameters
of a specific server algorithm, the application defines its need in the form of service contracts, which are
independent of the actual server used. Thus, diverse server algorithms and implementations, based on a
variety of scheduling schemes can then meet the service contracts. Should the application be run on a
system with a different scheduling scheme, the service contracts remain the same, only their realization in
terms of the specific server algorithms used is different.

In this project, we will not restrict our analysis to a specific server algorithm, nor to any specific global
scheduling algorithm. Two different implementations of the project framework will be provided. In the
MaRTE operating system, a global scheduling algorithm based on fixed priorities and a modified Sporadic
Server algorithm is used, whereas in the Shark operating system the global scheduler will be based on earliest
deadline first scheduling and on a modified Constant Bandwidth Server. Both algorithms will provide the
same programming interface, based on the service contract (see Section4).

One issue with servers is that it cannot be determined exactlywhenthe application will receive execution,
because it depends also on the presence of other servers in the system. Therefore, it may be possible that
an application receives all the needed computation time at the beginning of the server interval, or it may
happen that it receives all computation time at the end of the interval, or that the execution is scattered along
the interval. Some scheduling schemes, including table driven approaches, require task executions within
specific, short intervals. We introduce server deadlines to enable more precise specification of when the
actual executions will take place.

It is also important to be able to compute the service contract parameters, listed in Table4, that fulfill the
application requirements. In the third phase of this project, we have investigated the problem of computing
the contract parameters, by extending the approach presented in [16] and by off-line analysis for complex
constraints. The resulting techniques will be presented in D-SI.4v3.

7 Integration and implementation

This section presents in more detail how the FSF framework, described in the previous sections, is imple-
mented in the two operating systems used in the FIRST project, MaRTE OS and Shark OS.

The FIRST project has defined a clear API for using the FSF either from the application or from some
middleware agent that manages the quality of service requirements for a system. The API allows the ap-
plication to be completely independent of the underlying FSF implementation. Figure5 shows the main
elements of the API, decomposed into the different modules described in Section4. The API is provided
for both C and Ada and is available in Appendix 1.

The FSF services and associated API are designed to be implementable inside any real-time operating
system. It is also possible to implement them on top of an operating system that provides the ability to install
application-level schedulers. There is currently no standard way of providing this kind of functionality, and
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periodic, and the others are activated by the arrival of a message from the preceding activity. Therefore,
the latter activities inherit the period of the first activity (with the additional jitter introduced by the
processing and message transmission). If the transaction allows a continuous scale of periods between
some minimum and maximum values, separate negotiations in the network and in the different process-
ing nodes will most probably result in different periods because the spare capacity is different in each
node. Since the transaction cannot run with different periods, there needs to be some renegotiation to
change the period to the maximum obtained (representing the minimum resource consumption). During
this renegotiation things might have changed, requiring further renegotiation rounds.

We do not want to embed all this complexity into the
FSF implementation. Therefore, we have chosen to give
a minimum support for spare capacity distribution in-
side FSF, and leave the consensus problem to some
higher-level manager that would make the negotiations
for the application. For this purpose, there is a new at-
tribute in the service contract called the granted capac-
ity flag (see Table 6), which has the implication that the
period or budget of the server can only change if a rene-
gotiation or a change of quality and importance is re-
quested for it; it may not change automatically, for
instance because of negotiations for other servers. This provides a stable framework while performing
the distributed negotiation.

For a server with the granted capacity flag set, there is an operation to return spare capacity that cannot
be used due to restrictions in other servers of a distributed transaction.

4 Support on operating systems
The FIRST project has defined a clear API for using
the FSF either from the application or from some mid-
dleware agent that manages the quality of service re-
quirements for a system. The API allows the
application to be completely independent of the un-
derlying FSF implementation. Figure 2 shows the
main elements of the API, decomposed into the differ-
ent modules described in Section 3. The API is pro-
vided for both C and Ada.

The FSF services and associated API are designed to
be implementable inside any real-time operating sys-
tem. It is also possible to implement them on top of an
operating system that provides the ability to install ap-
plication-level schedulers. There is currently no
standard way of providing this kind of functionality,
and therefore each FSF implementation would have to
be tailored to a specific OS. To overcome this difficul-
ty in the future, an API has been defined to specify
services that allow an OS to provide application-level
scheduling support in a uniform way [3], and we have
started the process to request inclusion of this API into the real-time POSIX standard [9].

As a proof of concepts, the FSF services have been implemented in two real-time kernels, MaRTE OS1

[2] and Shark2 [8], both of which follow the POSIX minimum real-time profile [10]. These implemen-

1. MaRTE OS is distributed under the GPL and can be found at: http://marte.unican.es/

Table 6: Distributed spare capacity 
attribute

Name Description

granted 
capacity flag

Once the negotiation is fin-
ished, the first values for the 
budget and period given to 
the server must not change 
automatically

Figure 2. Main elements of the FSF API

Core

Set basic attributes
Set timing attributes
Synchronization objects
Negotiate contract
Renegotiate contract
Bind thread to server
Schedule timed job
Schedule triggered job
Get remaining budget
Set service thread data
Negotiate group

Shared objects

Init shared object
Set synchronization attr.

Spare Capacity

Set reclamation attr.
Change quality and

importance

Hierarchical

Init local scheduler
Set scheduling policy
Bind local thread
Set scheduling params.

Distributed (Core)

Set network id
Create send endpoint
Bind endpoint to server
Send message
Create receive endpoint
Receive message

Distr. spare capacity

Set granted capacity flag
Set server capacity

Figure 5: Main elements of the FSF API.

therefore each FSF implementation would have to be tailored to a specific OS. To overcome this difficulty in
the future, an API will be defined to specify services that allow an OS to provide application-level scheduling
support in a uniform way [5], and we will start the process to request inclusion of this API into the real-time
POSIX standard [2].

As a proof of concepts, the FSF services will be implemented in two real-time kernels, MaRTE OS [4]
and S.Ha.R.K [11], both of which follow the POSIX minimum real-time profile [1]. These implementations
will show that even with very different scheduling strategies it is possible to provide a portable FSF API.

In MaRTE OS the FSF services will be implemented using the application-defined scheduling API
proposed for the POSIX standard. The underlying operating system is based on the traditional real-time
POSIX fixed priority scheduling, and we will install a secondary application defined scheduler that contains
the FSF servers and manages the negotiated contracts. The modules that will be implemented in MaRTE
OS are the core (using fixed priorities and sporadic servers [20]), shared objects (with the SRP [6]), spare
capacity sharing, and the core distributed module.

Shark will not implement the application-defined scheduling API, but instead its kernel will be designed
with a modular structure to allow the coexistence and interplay of different scheduling algorithms. The
underlying scheduling algorithm will be EDF. The server algorithm, used for implementing the service
contract, will be the GRUB algorithm (Greedy Reclamation of Unused Bandwidth [14]). This algorithm
automatically adds dynamic reclamation to the CBS (Constant Bandwidth Server [3]). The modules that
will be implemented in Shark are the core (using EDF and constant bandwidth servers), spare capacity
sharing (restricted to deadlines equal to periods), dynamic reclamation, and hierarchical scheduling; we will
implement the shared objects module using Bandwidth Inheritance (BWI) [15], which extends the priority
inheritance protocol to server based scheduling.

In both MaRTE OS and Shark the admission control algorithm and the spare capacity calculation will be
implemented through a service thread that consumes part of the system resources in a controlled way. The
budget and period of the service thread will be able to be adjusted by the user, to trade between timeliness
of negotiations and overhead. In any case, when the budget of the service thread is exhausted, it can run in
the background.
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7.1 Service based on EDF and GRUB

As global scheduling algorithm, we selected the EDF togheter with a resource reservation algorithm, the
GRUB algorithm [5]. This algorithm is very similar to the CBS algorithm of Abeni and Buttazzo [1], and
in addition it automatically performs the dynamic reclaimation of the bandwidth. In S.Ha.R.K. it is possible
to configure the total amount of available bandwidth for the framework. In most of the experiments, this
bandwidth has been limited to 80% of the total system bandwidth. However, it is possible to change this
fraction.

S.Ha.R.K. permits to easily modify the scheduler and to mix different scheduling policies. The basic
mechanisms to implement a new scheduling policy is the scheduling module. A scheduling module resemble
an object in a object oriented language: it has internal data structures, a set of ”private” functions and a set
of ”public” functions that implement the interface with the S.Ha.R.K. generic scheduling mechanism.

Therefore, to implement the basic structure of the FSF in S.Ha.R.K. we will implement a set of schedul-
ing modules. Particular attention will be devoted to the hierarchical scheduling structure designed in the
FSF.
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Figure 1: Organisation of the modules in S.Ha.R.K..

local scheduler and its parameters, and allows threads to be added to servers with their own scheduling
parameters.

All the modules described so far have been implemented in the S.Ha.R.K. OS, and their implementation
will be discussed in the following sections. S.Ha.R.K. does not implement the Distributed module and the
Distributed Spare Capacity module.

3 Implementation of FSF on S.Ha.R.K.

In this section, we describe how the FSF library has been implemented in S.Ha.R.K..

3.1 Basic scheduling structure

As global scheduling algorithm, we selected the EDF togheter with a resource reservation algorithm, the
GRUB algorithm [5]. This algorithm is very similar to the CBS algorithm of Abeni and Buttazzo [1], and in
addition it automatically performs the dynamic reclaimation of the bandwidth. In S.Ha.R.K. it is possible
to configure the total amount of available bandwidth for the framework. In most of the experiments, this
bandwidth has been limited to 80% of the total system bandwidth. However, it is possible to change this
fraction.

S.Ha.R.K. permits to easily modify the scheduler and to mix different scheduling policies. The basic
mechanisms to implement a new scheduling policy is the scheduling module (see Appendix A). A schedul-
ing module resemble an object in a object oriented language: it has internal data structures, a set of “private”
functions and a set of “public” functions that implement the interface with the S.Ha.R.K. generic scheduling
mechanism.

Therefore, to implement the basic structure of the FSF in S.Ha.R.K. we implemented a set of scheduling
modules. Particular attention has been devoted to the hierarchical scheduling structure designed in the FSF.

In Figure 1 we show the basic structure of the S.Ha.R.K. scheduling modules used in FIRST. The
Generic Kernel performs generic operations like the dispatching and suspension of a task. It also implements

3

Figure 6: Organisation of the modules in S.Ha.R.K.

In Figure6we show the basic structure of the S.Ha.R.K. scheduling modules used in FIRST. The Generic
Kernel performs generic operations like the dispatching and suspension of a task. It also implements the
interface for all system calls. The actual scheduling is done in the modules that are organized in levels.
Modules in lower levels have higher priority.

Tasks are assigned to scheduling modules. When a system call is invoked by a task, the Generic Kernel
identifies which module the task belongs to, and invokes the appropriate operation on that module.

In the structure we designed for the FSF, the module in the lower level is an EDF scheduler. Only
if the EDF has no task to schedule, the module in level 1 (a simple Round Robin scheduler) is asked for
something to be executed. This module contains the dummy task and the main() function. Thus the main
and the dummy run in background.

Modules can ”insert” tasks in other modules. This is the mechanism used to implement the server
algorithm. Module GRUBSTAR handles the descriptors of all servers in the system, and the corresponding
tasks. In Figure 1, the arrow from the GRUBSTAR module to the EDF module means that the GRUBSTAR
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inserts one task per each server in the EDF module using the deadline of the server.
Finally, each task is assigned a different module. In Figure6, we present the structure when no hier-

archical server is involved: therefore, each task is assigned different NOSCHEDSTAR module (the name
comes from the fact that this module does nothing becuase it has no specific local scheduler and can hanlde
only one task).

IST-2001 34140 Deliverable D-OS.2v3

Task Generic Kernel GRUBSTAR EDF

activate

activate

insert

schedule

dispatch

dispatch

Figure 2: Sequence of messages exchanged between the S.Ha.R.K.ś scheduling modules when a task is
activated.
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Figure 7: Sequences of messages exchanged between the S.Ha.R.K scheduling modules when a task is
activated.

Now we describe the actual sequence of function calls that is performed when a task becomes active.
The sequence of messages is shown in Figure7 as a UML sequence diagram.

When a task corresponding to a server becomes active, it invokes the activate() function of the Generic
Kernel. This, in turns, calls the insert function of the NOSCHEDSTAR module, which in turns simply
redirects it to the insert function of GRUBSTAR module. The module computes the budget and the deadline
for the task, and ”inserts” the task in the EDF module. If the task is the earliest deadline task, this insertion
triggers a ”re-schedule” in the Generic Kernel, which invokes a dispatch on the involved modules. As a
consequence, module GRUBSTAR activates a timer to expire at the budget expiration of the task. The
situation described above is depicted in Figure7.

Similar situations happen for other scheduling decisions, like preemption or task suspension. For brevity,
we do not report here the complete description of the S.Ha.R.K.s internal scheduling mechanism for FSF.

Refer to the OS2.v3 deliverable for more detail of the S.Ha.R.K implementation.

7.2 Service based on FPS and SS

MaRTE OS Implementation of FSF The main architecture of the solution implemented is shown in Fig-
ure8 by means of a class diagram. In this diagram two separate memory areas are considered, one for the ap-
plication threads, labelled in8 as User Memory Space and the other one for the application scheduler related
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Figure 8: Main architecture of the implementation in MaRTE OS

objects, called Scheduler Memory Space. This separation is caused by the implementation-independent na-
ture of the application scheduling interface, which must allow for the application scheduler to be eventually
implemented in the kernel memory space. The link between the user threads and the underlying scheduler
is realized in the implementation of theFSF Service Contract API. This API is common to both target
platforms of the project: S.Ha.R.K OS and MaRTE OS. As it is shown in8, all the scheduling responsi-
bilities are solved by two internal threads, the scheduler and the service thread. The scheduler runs at a
priority higher than any FSF scheduled task and consequently its effect over the schedulability of the appli-
cation must be considered as an additional preemption term. The service thread instead is scheduled by the
underlying operating system as a normal sporadic server with a budget and period assigned.

In the MaRTE OS implementation, servers behave basically as the POSIX sporadic servers. Depending
on whether their workload is indeterminate or bounded they may go to the background or not, respectively.
Figure9 shows the state chart of an FSF server; it is only when the server is in the active state that its budget
is consumed. If the server has a thread bound to it, it may only execute if the server is in the active state or
if there is an available background time slice.

The detailed architecture of this scheduling mechanism, as well as the scheduling information data struc-
tures used to implement it, the detailed design of the methods provided by theFSF Service Contract API,
the way in which the reclamation algorithm and the acceptance test are implemented, the implementation of
the shared objects management, the organization of the code and the way of using it in an end-user applica-
tion, and the detailed description of the Distributed services module and its implementation are described in
document D-OS1v3.

7.3 Task synchronization

Shared objects??
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Figure 9: State chart of an FSF server in MaRTE OS

7.4 Utilisation based admission

7.4.1 Acceptance test and reclamation algorithm in MaRTE OS

In order to calculate the schedulability of the admitted servers, a ”pessimistic” though simple utilization
bounds test algorithm has been implemented, that can handle tasks with synchronization and deadlines
smaller than or equal to the task periods [13]. The test is applied each time a contract is negotiated and
maintains or recalculates as necessary a number of accumulative values, which are updated whenever the
test is made and the contract admitted, after a successful renegotiation or when a server is to be cancelled.
Among these values we calculate the ”utilization slack” of each server; the minimum of these slacks is the
utilization that will be safely shared by the reclamation algorithm. The terms that are used in the description
of the algorithms that follows, that are also held in a data structure associated to each server, are:

• U - Utilization, due to its own budget and period and forced by higher or equal priority servers

• B - Maximum blocking caused by lower priority servers

• P - Priority considered in the analysis, calculated using thefsf priority map() function

• T - Period considered in the analysis

• D - Deadline considered in the analysis, if it was not specified the maximum period is used.

• A - Utilization slack or available. It is the difference between U and the server’s ”utilization limit”

• N - One plus the number of higher or equal priority severs

Other terms used:

• Servers set - the set of servers already admitted, it can be empty

• i - indicates one server in the set if it is not empty

• Critical sections set - is the set of critical sections of a certain server

• s - a critical section in a set
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• C - the worst case execution time in a certain critical section

• U available - the total available utilization (the minimum of all the slacks)

The formulation of the modified utilization bound test used is the next:
For the analysis of the server i consider all the servers with priority equal to or higher thanP i and

group them into the following two sets:

• H1, singly preemptive tasks: servers with periods ¿=T i

• Hn, multiply preemptive tasks: servers with periods ¡T i

The effective utilization for server i is:

fi =
∑

j∈Hn

Cj

Tj
+

∑
j∈Hl

Ck

Ti
+

Bi + Ci

Ti

The utilization bound for the serveri is:

n = num(Hn) + 1

∆i =
Di

Ti
≤ 1

Ubound(n, ∆i) =
{

n((2∆i)1/n − 1) + 1−∆i , 0.5 ≤ ∆i ≤ 1
2 , 0 ≤ ∆i ≤ 0.5

And the schedulability test is:

fi ≤ Ubound(n, ∆i)

The dynamic reclamation module is not implemented in the MaRTE OS version of FSF.

7.4.2 Acceptance test and reclamation algorithm in S.Ha.R.K OS

description from SSSA

7.5 Distribution

In distributed systems it is possible to perform a global schedulability analysis; for example, response time
analysis techniques exist both for fixed priority [24, 23] and EDF [22] scheduling. However, we do not
want to impose a global scheduling strategy at the underlying schedulers which would be too complex to
implement. Rather, the application will be partitioned, with different parts executing in each node, and
artificially assign timing requirements to ensure that the global timing requirements can be met. This allows
the analyses to be performed independently for each node.

In this context the scheduling framework described in this document will be used for each of the pro-
cessing nodes of the system, and also for scheduling the network. The implementation of the framework in
the network is difficult because the scheduling decisions themselves cannot be made by the network, and
must be implemented by the network communication drivers and executed by the processor nodes. Based
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on the assumption that in distributed systems the network is usually a scarce resource, while the processors
have more capacity, we will design a network scheduler in which the processors compute the scheduling
decisions for the network, using shared information regarding the network contracts, and minimizing the
amount of information sent through the network. To avoid the possibility of two processors inconsistently
negotiating in parallel, a negotiation token will be created and circulated through the different processors,
until one of them has to perform a negotiation, in which case it will hold the token throughout the negoti-
ation process. Once the negotiation is completed the new state of the network will be propagated to all the
other nodes to update their shared network server information, and then the token will be released.

To implement the network scheduler it is necessary to make sure that the scheduling information can be
distributed to all the nodes. This can be accomplished by boadcasting the changes, or in the case of a token
passing network, by sending the information with the token.

In summary, the same scheduling framework will be used in the network and in the processing nodes.
The overall system and timing requirements will be distributed among specific contracts for each application
part executing in each node and in the network. The minimum guarantees in these contracts must ensure
that the requirements are met. The underlying scheduler in each node will work independently of the others,
and independently of the network scheduler. The computations required for the network scheduler will be
executed in the node requesting negotiation, in a mutually exclusive way, and will be synchronized with all
the other nodes in the network.

7.6 Table-driven scheduling

Complex constraints, such as stemming from distribution, precedence, control or media applications, cannot
be handled directly by online algorithms, as many pose NP hard problems. However, these constraints are
easily solved in table-driven scheduling by using existing off-line schedulers to create a scheduling table that
specifies the task executions such that the constraints are fulfilled. The table is usually constructed for an
application that has exclusive access to all resources in the system. However, if several applications coexist
simultaneously, constructing the table by ignoring the utilization demanded by the rest of the applications
will introduce the risk that the table-driven application will monopolize the resources such that the rest of
the applications will starve.

Therefore, in order for the table-driven application to coexist with the rest of the applications, the table
construction must take into account the demands of the rest of the applications. However, in the general
case, it is difficult to know and include the requirements of the other applications in the table construction.

In FIRST the application demands are specified by their service contracts. Thus, a modified offline
scheduler constructs a table based on the contracts, rather than considering the table-driven application
constraints alone. The table is a list of tasks. For each task we need a list of non overlapping target windows,
i.e., temporal windows in which the tasks have to execute and complete. The local scheduler in FSF (table-
driven) decides which task to execute based on the table. The API for specifying the table is defined in
Appendix 1, the API reference manual.

In addition, possibilities exist to transform off-line tables to attributes suitable for FPS scheduling [9].
In that case, an off-line schedule first is constructed for a set of tasks to fulfill their complex constraints .
Then, by analyzing the off-line schedule, we derive FPS attributes, i.e., priorities, offsets, deadlines, such
that the tasks, when scheduled by FPS, will execute flexibly, while fulfilling the same original complex
constraints. The method generates optimal solutions with an ILP-based algorithm. It does so by deriving
priority inequalities, which are then resolved by integer linear programming.

Another possibility is to transform off-line schedules to attributes for EDF scheduling [10]. In a first step,
the offline scheduler resolves complex constraints and reduces their complexity. The constructed schedule
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is translated into independent tasks on single nodes with start times and deadline constraints only. These are
then executed using earliest deadline first scheduling algorithm at runtime.

8 Summary and conclusions

This document presented the software architecture that will be investigated and supported in the FIRST
project. Specifically, it has described the mechanisms and API that will be provided to the programmer to
support the application requirements listed in Section2.

This document will be an input for Workpackage 3, Operating System Support.
Schedulability analyses and techniques for the proposed methodologies will be presented in Deliverable

D-SI.4v3.
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