
IST-2001 34140

Operating System Primitives: implementation under
MaRTE OS

Deliverable D-OS.1v3

Responsible: Universidad de Cantabria

Julio L. Medina Pasaje, Michael González Harbour,
 Mario Aldea Rivas, José Carlos Palencia Gutiérrez

12 April 2005

IST-2001 34140 Deliverable D-OS.1v3

1

Contents

1 Introduction . 2

2 The FIRST scheduling framework API . 4
2.1 Data structures and configuration parameters .4
2.2 Contract management functions . 7
2.3 Server administration .7
2.4 Quality management functions . 8
2.5 Bounded workload management . 8
2.6 Services for distributed applications .8
2.7 Support for shared resources . 8
2.8 Implementation-specific services . 8

3 Internal architecture of the implementation . 9
3.1 Scheduling information data structures .9

3.1.1 Scheduler and Service Thread shared information 9
3.1.2 Server specific data: . 11
3.1.3 Thread specific data . 11
3.1.4 Service jobs table and index queue .12
3.1.5 Synchronization objects . 12
3.1.6 App-sched parameters . 13
3.1.7 Constants for signalling the scheduler in the info field13
3.1.8 Explicit data exchanged with the scheduler .13

3.2 Scheduler operation .14
3.3 Server operation .14
3.4 Threads states .15
3.5 Background round-robin scheduler .16
3.6 Getting the OS configuration information .16

4 Design of the FSF_Contract_API methods . 17

5 Acceptance test and reclamation algorithm . 18
5.1 Automatic priority assignment . 19
5.2 Acceptance test when adding a new server .19
5.3 Acceptance test structures maintenance when deleting a server20

5.3.1 Spare capacity sharing algorithms .21

6 Shared objects management . 22

7 Implementation in Ada. 22

8 Organization of the code . 22

9 References . 24

Annex 1: Architecture of the distributed FSF implementation 25

IST-2001 34140 Deliverable D-OS.1v3

2

1 Introduction
This document describes an implementation of the FIRST Scheduling Framework (FSF) as it is proposed
in the deliverable D-SI.1v3. This implementation has been developed to run on a platform conforming
to the Minimum Real-time POSIX profile, and using the non-standard application defined scheduling
extensions ("APP_SCHED") [AG02]. The particular platform is using the MaRTE OS developed at the
University of Cantabria [AG01],

A graphical presentation of usages and users of the framework is shown in Figure 1. Multi-threaded and
distributed applications can be managed to fit in the contract-server model, by assigning the different
management responsibilities to a concrete thread or to some coordinated group of them.

The main architecture of the solution implemented is shown in Figure 2 by means of a class diagram. In
this diagram two separate memory areas are considered, one for the application threads, labelled in Fig-
ure 2 as User Memory Space and the other one for the application scheduler related objects, called Sched-
uler Memory Space. This separation is caused by the implementation-independent nature of the
application scheduling interface, which must allow for the application scheduler to be eventually imple-
mented inside the kernel’s memory space, although the current implementation in MaRTE OS uses a
special thread at the application level.

The link between the user threads and the underlying scheduler is made in the implementation of the
FSF_Service_Contract_API. This API is common to both target platforms of the project: S.Ha.R.K OS
and MaRTE OS, and is briefly presented in the next section. As it is shown in Figure 2, all the scheduling
responsibilities are solved by two internal threads, the scheduler and the service thread. The scheduler
runs at a priority higher than any FSF scheduled task and consequently its effects over the schedulability
of the application must be considered as an additional preemption term. The service thread, instead, is

Figure 1. A presentation of the FSF services according to its expected usage.

Multi-threaded / Distributed
Application Manager

Budget ReturningJobs Synchronization
 and Timing

Fill, (re)negotiate and
cancel contracts and
groups of contracts

Bind and Unbind
threads or endpoints
to servers

Get available capacity or total
quality, and change quality and
importance,

Schedule timed and
event-triggered jobs Sending and

Receiving
messages through
a network

Add threads and
set scheduling
parameters

Bandwidth reservation,
creation and removal of
communication
endpoints

Scheduling policy for
threads in a server

Contract Management

Servers Administration

Quality Management Hierarchical Scheduling

Network Administration

Shared Objects

Services for the usage
of compatible protocols
in the access to shared
resources

Bounded Workload
Management Transmission services

Local Scheduling

Server / Threads

IST-2001 34140 Deliverable D-OS.1v3

3

scheduled by the underlying operating system as a normal sporadic server with a budget and period as-
signed by the system developer.

The detailed architecture of this scheduling mechanism, as well as the scheduling information data struc-
tures used to implement it are presented in Section 3. The detailed design of the methods provided by
the FSF_Service_Contract_API is presented in Section 4. Section 5 describes the way in which the rec-
lamation algorithm and the acceptance test are implemented. Section 6 presents the implementation of
the shared objects management. Section 7 shows the Ada95 version of the FSF API services. Section 8
shows the organization of the code and the way of using from an end-user application, using the appro-
priate version of MaRTE OS. Finally the last section presents the referenced bibliography.

The detailed description of the Distributed FSF module and its implementation appears in Annex A of
this document.

In a separate compressed file, which is available in the web page presented in deliverable D-EX.2v3, it
is possible to find the complete source code of the implementations in C and Ada, the Makefile, and all
the necessary header (include) files for the implementation presented in this document.

Figure 2. Main architecture of this implementation

 User Memory Space

 Scheduler Memory Space

Signals sjob done

Specific_data n
server_id
thread_index

...

FIFO queueSynch_object

Service Thread

Sjob request

Shared Scheduling Information

Scheduler

+index queue
*+Synch_Obj table *

*

+Sjob table

*

Thread nThread n

FSF_Service_Contract_API

Thread n

AppSchedParams n ...

Server_m Server_m Server_m...

...
Specific_data n

server_id
thread_index

Specific_data n
server_id
thread_index

Thread_data n Thread_data n Thread_data n...

{Highest priority} {Lowest (configurable) priority}

AppSchedParams n AppSchedParams n

Specific data n

server_id

Specific data n

server_id

Specific data n

server_id

IST-2001 34140 Deliverable D-OS.1v3

4

2 The FIRST scheduling framework API
All the functionality defined in the FIRST Scheduling Framework (FSF) is accessible through its pro-
posed service contract application programming interface. To facilitate its usage and the selective im-
plementation of the wide functionality proposed by the FIRST project architectural framework
requirements, this API is divided into several modules. The precise description of the API and the ration-
ale on the purpose of each module is made in the D-SI.1v3 and D-AF.2v2 deliverables. Nevertheless, for
convenience, a graphical summary of the API is presented here. Figure 3 shows the modules of the API
and their dependencies by means of a visibility graph depicted in a UML components diagram. The de-
pendencies shown correspond to the visibility required between the Ada95 specification packages used
in the ADA version of the FSF API.

The modules implemented in this deliverable are the Core (FSF), Spare_Capacity, Shared_Objects,
Implementation_Specific, and Distributed. Other modules such as hierarchical scheduling and dynamic
reclamation are implemented in the Shark version of FSF.

Figure 4 presents in a UML class diagram, a language-independent view of the data structures and meth-
ods exported and used by the Core module of this API, as well as other operations exported by other
modules; the diagram shows its decomposition considering an object oriented approach. The actual data
structures used and a short reference to the functionality offered by the FSF API are then briefly men-
tioned.

2.1 Data structures and configuration parameters

The main abstract data structure defined in the FSF API is the fsf_contract_parameters_t struc-
ture, which effectively contains the contract parameters described in Section 4 of the D-SI.1v3 deliver-
able. Here we present this structure and its parameters from its implementation point of view. In
following sub-sections some semantic issues are described when necessary as some other capabilities
are introduced. This structure is proposed as an opaque type, whose attributes are written and read by
means of a set of functions. Most of the parameter names and the types shown in Figure 4 are self-ex-
planatory and their C versions are included in Annex A of D-SI.1v3. The concrete implemented C ver-

Figure 3. Modules of the service contract API

FSF

Fsf.Hierarchical

Fsf.Spare_Capacity

Fsf.Distributed

Fsf.Shared_Objects Fsf.Implementation_Specific

Fsf.Distributed.Spare_Capacity

Fsf.Dynamic_Reclamation

IST-2001 34140 Deliverable D-OS.1v3

5

Figure 4. Abstract view of the service contract API

fsf_workload_t
<<enum>> + FSF_BOUNDED
<<enum>> + FSF_INDETERMINATED

<<enumerated>>

fsf_granularity_t
<<enum>> + FSF_CONTINOUS
<<enum>> + FSF_DISCRETE

<<enumerated>>

fsf_preemption_level_t
<<subtype>>

2..FSF_MAX_N_UTILIZATION_VALUES

1..FSF_MAX_N_CRITICAL_SECTIONS

fsf_utilization_value_t
+ budget : timespec
+ period : timespec

fsf_critical_section_data_t
+ wcet : timespec
+ shared_object : fsf_shared_obj_handle_t

fsf_utilization_set_t
+ size : integer

+value

fsf_critical_sections_t
+ size : integer

+section

fsf_contract_parameters_t
- budget_min : timespec
- period_max : timespec
- budget_max : timespec
- period_min : timespec
- workload : fsf_workload = FSF_INDETERMINATE
- d_equals_t : boolean = false
- deadline : timespec
- budget_overrun_sig_notify : signal = 0
- budget_overrun_sig_value : sig_val = 0
- deadline_miss_sig_notify : signal = 0
- deadline_miss_sig_value : sig_val = 0
- granularity : fsf_granularity = FSF_CONTINOUS
- quality : fsf_quality_t = 0
- importance : fsf_importance_t = 1
- preemption_level : fsf_preemption_level_t

+ fsf_initialize_contract()
+ fsf_set_contract_basic_parameters()
+ fsf_get_contract_basic_parameters()
+ fsf_set_contract_timing_requirements()
+ fsf_get_contract_timing_requirements()
+ fsf_set_contract_reclamation_parameters()
+ fsf_get_contract_reclamation_parameters()
+ fsf_set_contract_synchronization_parameters()
+ fsf_get_contract_synchronization_parameters()

0..1

+utilization_set

0..1

0..1

+critical_sections

0..1

fsf_importance_t
<<subtype>>

{Integer range 1..2**32-1}

{Integer range 1..5}

fsf_quality_t
<<subtype>>

{range 1..MAX_UNSIGNED}

fsf_capacity_t
<<subtype>>

{range 0..MAX_UNSIGNED}

fsf_renegotiation_status_t
<<enum>> + FSF_IN_PROGRESS
<<enum>> + FSF_REJECTED
<<enum>> + FSF_ADMITTED

<<enumerated>>

fsf_server_id_t
<<subtype>>

fsf_synchronization_object_t
+ events : natural

+ fsf_create_synch_obj()
+ fsf_signal_synch_obj()
+ fsf_destroy_synch_obj()

+servers

fsf_queue_t

<<ordered>>

1..MAX_N_SERVERS

{Integer range 0..MAX_N_SERVERS}

fsf_configuration_parameters
+ FSF_ADMISSION_TEST_IS_ENABLED : boolean = true
+ FSF_MAX_N_SERVERS : integer = 10
+ FSF_MAX_N_THREADS : integer = 10
+ FSF_MAX_N_CRITICAL_SECTIONS : integer = 10
+ FSF_MAX_N_UTILIZATION_VALUES : integer = 5
+ FSF_SCHEDULER_PRIORITY : integer = 20
+ FSF_SCHEDULER_SIGNAL : integer = SIGRTMIN
+ FSF_HIGHEST_THREAD_PRIORITY : integer = FSF_SCHEDULER_PRIORITY-1
+ FSF_LOWEST_THREAD_PRIORITY : integer = 3
+ FSF_MAX_N_SERVICE_JOBS : integer = 10
+ FSF_SERVICE_THREAD_PERIOD : duration = 0.01
+ FSF_SERVICE_THREAD_BUDGET : duration = 0.001
+ FSF_SERVICE_THREAD_PRIORITY : integer = 2
+ FSF_MAX_N_SHARED_OBJECTS : integer = 100
+ FSF_MAX_N_SYNCH_OBJECTS : INTEGER = 5
+ FSF_MAX_N_SERVERS_IN_SYNCH_OBJECT : integer = 4
+ FSF_MAX_N_EVENTS_IN_SYNCH_OBJECT : integer = 100
+ FSF_MAX_N_PENDING_REPLENISHMENTS: Integer = 250
+ FSF_FSF_RR_SLICE_CPU_TIME: Duration = 0.001
+ FSF_FSF_MAX_N_TARGET_WINDOWS: Integer = 100
+ FSF_MAX_SIZE_SHARED_OBJ_ID:Integer = 65
+ FSF_MAX_N_NETWORK_IDS:Integer = 1
+ FSF_MAX_N_SERVER_VALUES: Integer = 10
+ FSF_MAX_N_CONTRACT_VALUES: Integer = 10

+ fsf_priority_map(plevel : unsigned long) : integer

FSF_Service_Contract_API

+ fsf_negotiate_contract()
+ fsf_negotiate_contract_for_new_thread()
+ fsf_negotiate_contract_for_myself()
+ fsf_bind_thread_to_server()
+ fsf_unbind_thread_from_server()
+ fsf_get_contract()
+ fsf_cancel_contract()
+ fsf_renegotiate_contract()
+ fsf_request_contract_renegotiation()
+ fsf_get_renegotiation_status()
+ fsf_request_change_quality_and_importance()
+ fsf_schedule_timed_job()

+ fsf_schedule_triggered_job()
+ fsf_get_available_capacity()
+ fsf_get_total_quality()
+ fsf_is_admission_test_enabled()
+ fsf_get_cputime()
+ fsf_get_remaining_budget()

+ fsf_init()
+ fsf_set_service_thread_data()
+ fsf_get_service_thread_data()
+ fsf_negotiate_group()

+ fsf_timed_schedule_timed_job()

IST-2001 34140 Deliverable D-OS.1v3

6

sion of this structure as well as some other types used to define it (also shown in Figure 4) are presented
here for convenience.

typedef struct {
 struct timespec budget_min;
 struct timespec period_max;
 struct timespec budget_max;
 struct timespec period_min;
 fsf_workload_t workload;
 bool d_equals_t;
 struct timespec deadline;
 int budget_overrun_sig_notify;
 union sigval budget_overrun_sig_value;
 int deadline_miss_sig_notify;
 union sigval deadline_miss_sig_value;
 fsf_granularity_t granularity;
 fsf_utilization_set_t utilization_set;
 int quality;
 int importance;
 fsf_preemption_level_t preemption_level;
 fsf_critical_sections_t critical_sections;
 fsf_sched_policy_t policy;
 fsf_network_id_t network_id;
 bool granted_capacity_flag;
} fsf_contract_parameters_t

In addition to the attributes described in Annex A of D-SI.1v3, the members
budget_overrun_sig_value and deadline_miss_sig_value, were included to allow for the
possibility of sending an information field configured by the user attached to the indicated signal, when
the respective notification is required.

The data types fsf_utilization_set_t and fsf_critical_sections_t are implemented as
structures with fixed-size arrays. Their size as well as all other parameters are configurable by the user,
and are shown in Figure 4 as the fsf_configuration_parameters class, which corresponds to the
fsf_configuration_parameters.h header C file

The utilization set, used when the granularity of the application timing is discrete, is introduced in the
contract by the types fsf_utilization_value_t and fsf_utilization_set_t.

typedef struct {
 struct timespec budget; // Execution time
 struct timespec period; // Period
} fsf_utilization_value_t;

typedef struct {
 int size; // = 0
 fsf_utilization_value_t value[FSF_MAX_N_UTILIZATION_VALUES];
} fsf_utilization_set_t;

The concrete C types used for introducing the critical sections are:

// Critical section data
typedef struct {
 fsf_shared_obj_handle_t obj_handle;
 struct timespec wcet; //Execution time
} fsf_critical_section_data_t;

// List of critical sections
typedef struct {
 int size; // = 0

IST-2001 34140 Deliverable D-OS.1v3

7

 fsf_critical_section_data_t section[FSF_MAX_N_CRITICAL_SECTIONS];
} fsf_critical_sections_t;

The service contract API defines also a number of constants for the assignment of default values and for
the error codes possibly returned by the functions.

2.2 Contract management functions

Here we distinguish two groups of functions. A first group embodies the functions for the composition
and interrogation of the passive structure that holds a contract. These are the methods of the
fsf_contract_parameters_t class shown in Figure 4. The second group considers functions for the
negotiation and cancellation of contracts, which effectively reserve and release execution capacity from
the system, creating the servers for the contract parameters and also assigning the initial thread to the
servers. They are presented in Figure 4 as methods of the FSF_Service_Contract_API class.

The first function that must be called to initialize and create all the internal management structures that
are necessary for the FIRST Scheduling Framework to operate properly is the fsf_init function.

The contract management functions that operate over the passive data structure are spread across the dif-
ferent modules of the API and are characterized by having the contract parameters structure as their first
argument, and being presented as pairs of operations, one that sets and another one that gets the corre-
sponding parameter.

The default values stored in a contract parameters object after its initialization are:

// budget_min => {0,0};
// period_max => {0,0};
// budget_max => {0,0};
// period_min => {0,0};
// workload => DEFAULT_WORKLOAD; (FSF_INDETERMINATE)

// d_equals_t => DEFAULT_D_EQUALS_T; (false)
// deadline => DEFAULT_DEADLINE; (0,0)
// budget_overrun_sig_notify => 0; (signal number)
// budget_overrun_sig_value => {0};
// deadline_miss_sig_notify => 0; (signal number)
// deadline_miss_sig_value => {0};
//
// granularity => DEFAULT_GRANULARITY;
// utilization_set; => size = 0

// quality => DEFAULT_QUALITY;(0)(range 0..2**32-1)
// importance => DEFAULT_IMPORTANCE; (1)(range 1..5)
//
// preemption_level => 0; (range 1..2**32-1)
// critical_sections; => size = 0
//
// policy => DEFAULT_SCHED_POLICY; (FSF_NONE)

// network_id => FSF_NULL_NETWORK_ID; (0)

// granted_capacity_flag => false;

2.3 Server administration

After a successful negotiation, the reserved execution capacity demanded by a contract is managed by
the scheduling system under the concept of a server. The basic operations allowed for the user to do with
the servers are its assignment or binding to different operating system threads and the synchronization
of the jobs to be performed using the capacity reserved by the servers. The binding and unbinding of
threads to and from servers allows for the possibility of having servers that are not bound, which means

IST-2001 34140 Deliverable D-OS.1v3

8

servers not in use (wasting capacity) as well as threads suspended in a dormant state, waiting to be bound
to a server.

The FSF hierarchical module is not supported in the present MaRTE OS implementation, but it is feasi-
ble to be implemented in the future, having several threads bound at the same time to a server. This im-
plies an implementation-dependent underlying scheduling mechanism among these threads that can be
implemented in the first level scheduler. The ability of having CPU clocks attached to groups of threads
would be a key feature for the target operating system to realize this enhancement to the binding mech-
anism.

On the other hand the event-driven synchronization of servers proposed by the synchronization objects,
mentioned in Section 4.1 and included in Annex A of the D-SI.1v3 deliverable, is implemented with a
structure that effectively realizes the fsf_synch_object_t class shown in Figure 4.

2.4 Quality management functions

The sharing of the capacity that is beyond the minimum required for the acceptance of the contracts is
performed over the basis of the server’s quality and importance parameters, which are set and managed
using the spare_capacity module operations. The functions listed in that module are used by a server or
a quality management centralized application to control the relative position of a server in the context of
the rest of the servers in the same importance level.

2.5 Bounded workload management

These functions are dedicated to the control of each individual piece of work that must be performed by
bounded workload servers. They ask the scheduler to activate the server on a per-job or per-instance ba-
sis. There are three operations for this purpose: fsf_schedule_timed_job,
fsf_schedule_triggered_job, and fsf_timed_schedule_triggered_job.

2.6 Services for distributed applications

The Distributed FSF modules brings the possibility of reserving and sharing network bandwidth in the
same manner it is done for processing capacity. Besides it offers a basic communications programming
interface that abstract away the network provider implementation dependent mechanisms used. The im-
plementation of the Core Distributed module is presented in an addendum to this document, but the dis-
tributed spare capacity module was not implemented due to time limitations.

2.7 Support for shared resources

The Shared objects module provides services to introduce the effect of mutually exclusive (passive) re-
sources in the system and to set the corresponding critical sections in the contracts. The run time syn-
chronization of servers in the usage of common (shared) resources is expected to be realized with the
usual primitives provided by the operating system, like pthread_mutex_lock,
pthread_mutex_trylock and pthread_mutex_unlock, but to assure that they will implement a
priority inversion avoiding protocol that is appropriate for the FSF scheduler, the mutexes to use are in-
itialized by means of the primitives offered by the shared objects module, whose implementation is pre-
sented in detail in Section 6. What it is important to note in this situation, considering the fixed priority
based implementation in MaRTE OS, is that the preemption level assigned to each shared object (actu-
ally the ceiling), must be set equal to the highest preemption level among those of the servers that will
make use of the resources protected by the critical sections included in those servers contracts.

2.8 Implementation-specific services

To keep the API as general as possible, the usage of preemption levels in contracts and shared objects is
encapsulated in a separate module. The services offered in this module allow the user to set the concrete
priorities at which the tasks in the servers will run, as well as the priority ceilings to be set for the shared

IST-2001 34140 Deliverable D-OS.1v3

9

object mutexes. If these values are not set by the user, an automatic priority assignment will be provided
for the servers, and the maximum possible priority will be used as the ceiling of shared objects, thus mak-
ing the system possibly less schedulable.

3 Internal architecture of the implementation
The main architecture of the implemented solution is shown in Figure 2. The scheduling mechanism in-
volves the collaboration of two threads, one is the called Service Thread, which is dedicated to perform
admission tests and recalculating the priorities, budgets, and periods for the servers when necessary, and
the other is the Scheduler itself, which is in charge of attending the timing and signalling related events,
with low latencies. The scheduling information data structures necessary to implement this collaboration
are described next, then the operation of these two threads is presented. Finally the state-space that
shapes the operation of the servers, the threads, and the background round-robin scheduler are described.

3.1 Scheduling information data structures

Figure 5 shows an abstract view of the basic components of the scheduling solution given in the present
implementation. Each part of this structure is mentioned and described in more detail in the remainder
of this section.

3.1.1 Scheduler and Service Thread shared information

The scheduling mechanism uses a static global data structure to store all the scheduling information. This
global structure is shared by the scheduler thread and the service thread, and contains all the data struc-
tures shared among these two threads. A summarized UML representation of this structure is shown in
Figure 6. The C code of this structure is extracted from the fsf_types.h header file and is included

Figure 5. Static abstract view of the scheduler internal data structures and threads

User Memory
Space

Scheduler Memory Space

Thread n

AppSchedParams n

Thread n

AppSchedParams n

Thread n

Signals sjob done

Specific_data n
+ server_id
+ thread_index

Specific_data n
+ server_id
+ thread_index

...

...

AppSchedParams n
+ command
+ server
+ contract

Specific_data n
+ server_id
+ thread_index

fsf_server_data_t
+ thread
+ state
+ next_activation
+ next_deadline
+ next_overrun
+ next_next_period
+ next_next_budget
+ at_data
+ cputime_at_bind
+ cputime
+ job_timer
+ deadline_timer
+ contract
+ p_contract
-

fsf_synch_sched_obj_t
+ server list
+ events
+ get_index
+ put_index
+ state

FIFO queue
+ mutex
+ conditional_variable
+ index_list : array of int

+ enqueue()
+ dequeue()Sjob request

+ type
+ in_data
+ out_data

Sched signal info
+ type
+ data : {sjob,server}

Service Thread
+ priority
+ budget
+ period
+ trace_indexThreads "talk to" the scheduler by:

 - explicit_call_with_data (and reply)
 - pthread_create or
 - pthread_setappschedparam

Scheduler is signaled by the
server timers to indicate budget
overran and missed deadlines
and also by the service thread
when a service job is done

Thread n

Scheduler

+index queue

*+Synch_Obj table *
*

+Sjob table
*

fsf_sched_data_t
+ servers_data_key
+ threads_data_key
+ scheduler_id
+ n_servers
+ n_threads
+ next_server
+ next_thread
+ u_available
+ q_total
+ total_u_available
-

*

+Servers table

*
fsf_thread_data_t

+ id : pthread_t
+ cpu_timer : timer_t
+ cpu_clock : clockid_t

**
+threads_table

IST-2001 34140 Deliverable D-OS.1v3

10

below for convenience. A common approach for the treatment of lists in this implementation, is the usage
of fixed-size arrays and a state variable that indicates whether each record is in use or it is empty.

General global control structure:

typedef struct {
 pthread_key_t servers_key;
 pthread_key_t threads_key;
 pthread_t scheduler_id;
 size_t msg_type_size;
 size_t reply_error_size;
 size_t appschedparam_command_size;

 fsf_service_th_data_t service_th;
 timer_t service_th_job_timer; //activation & refill
 timer_t service_th_cpu_timer; //budget overrun
 fsf_thread_state_t service_th_state; //ACTIVE or TIMED

 int n_threads;
 int next_thread;
 fsf_thread_data_t threads[FSF_MAX_N_THREADS];

 int n_servers; // = 0;
 int next_server; // = 0;
 fsf_server_data_t servers[FSF_MAX_N_SERVERS];

 int n_sjobs;
 int next_sjob;
 fsf_serv_job_t sjobs[FSF_MAX_N_SERVICE_JOBS];

 fsf_int_queue_t queue;

 int n_synchobjs;
 int next_synchobj;
 fsf_synch_sched_obj_t synchobjs[FSF_MAX_N_SYNCH_OBJECTS];

 double u_available[FSF_N_IMPORTANCE_LEVELS];
 int q_total[FSF_N_IMPORTANCE_LEVELS];

 double total_u_available;
 double next_total_u_available;

 fsf_server_data_t *at_list;

Figure 6. Simplified view of the global scheduler data structure

fsf_serv_job_t
+ type
+ in_data
+ out_data

fsf_synch_sched_obj_t
+ server list
+ events
+ get_index
+ put_index
+ state

fsf_service_th_data_t
+ priority
+ budget
+ period
+ trace_index

fsf_int_queue_t
+ mutex
+ conditional_variable
+ index_list : array of int

+ enqueue()
+ dequeue()

fsf_sched_data_t
+ servers_data_key
+ threads_data_key
+ scheduler_id
+ n_servers
+ n_threads
+ next_server
+ next_thread
+ u_available
+ q_total
+ total_u_available
-

*

+Sjob table

*

*
+Synch_obj table

*
11

11

fsf_ur_data_t
+ utilization
+ period
+ slack
+ deadline
+ budget

fsf_server_data_t
+ thread
+ state
+ next_activation
+ next_deadline
+ next_overrun
+ next_next_period
+ next_next_budget
+ at_data
+ cputime_at_bind
+ cputime
+ job_timer
+ deadline_timer
+ contract
+ p_contract
-

*

+Servers table

*

fsf_at_data_t
+ blocking_term
+ utilization
+ n_affecting_servers
+ slack
+ priotity
+ deadline
+ budget
+ period

IST-2001 34140 Deliverable D-OS.1v3

11

 double final_t_u_a;
 double trying_t_u_a;

} fsf_sched_data_t;

Service thread configuration data structure:

typedef struct {
 pthread_t thread;
 struct timespec period, budget;
 int priority;
} fsf_service_th_data_t;

Other types contained in the global structure are shown next.

3.1.2 Server specific data:

typedef struct fsf_server_data_t {
 struct fsf_server_data_t *next;
 struct fsf_server_data_t *at_next;
 fsf_server_id_t server_id;
 struct timespec last_activation; /* absolute time */
 struct timespec next_activation; /* absolute time */
 struct timespec next_deadline; /* absolute time */
 struct timespec period; /* relative time */
 struct timespec budget; /* relative cpu time */
 struct timespec next_period; /* relative time */
 struct timespec next_budget; /* relative cpu time */
 struct timespec pending_budget; /* relative cpu time */
 struct timespec remaining_budget_at_refilling; /* relative cpu time */
 struct timespec cputime; /* absolute cpu time */
 struct timespec cputime_at_bind; /* absolute cpu time */
 timer_t job_timer; //activations & periodic deadlines
 timer_t deadline_timer; //non periodic deadline misses
 fsf_thread_data_t *thread;
 fsf_contract_parameters_t *p_contract;
 fsf_contract_parameters_t contract;
 double u_differential[FSF_MAX_N_UTILIZATION_VALUES-1];
 fsf_at_data_t at_data;
 fsf_at_data_t next_at_data;
 fsf_ur_data_t ur_data;
 double tmp_u;
 double tmp_a;
 fsf_ur_data_t try_ur_data;
 char state; //fsf_server_state_t
 char deadline_missed;
 char budget_overran;
 char reply_deadline_missed;
 char sub_state;
 char last_renegotiation_status; //fsf_renegotiation_status_t
 char synch_obj_index_plus;
 char synch_obj_server;
} fsf_server_data_t;

3.1.3 Thread specific data

typedef enum {FSF_ACTIVE_THREAD, FSF_TIMED_THREAD,
 FSF_UNBOUND_THREAD, FSF_EMPTY_THREAD} fsf_thread_state_t;

typedef struct {
 fsf_thread_state_t state;
 pthread_t id;
 timer_t cpu_timer;
 clockid_t cpu_clock;

IST-2001 34140 Deliverable D-OS.1v3

12

} fsf_thread_data_t;

3.1.4 Service jobs table and index queue

The service job table is filled by the scheduler with those jobs that must be done by the service thread.
Then, the index of the job is sent to the service thread through a FIFO queue implemented with a condi-
tional variable. It is important to observe that after finishing the job, the service thread sends a signal to
the scheduler with the information field asserted to the sjob index already done. The field
event_$_type_queuing_point indicates what was the kind of event and user function combination that
caused the sjob to be invoked, and in that way it is possible to select the pending actions to accomplish
before returning control to the calling thread if it is the case, or simply finishing the action.

typedef enum {FSF_IN_COURSE_SJOB, FSF_DONE_SJOB, FSF_EMPTY_SJOB} fsf_sjob_state_t;

typedef enum {FSF_NOTHING_ELSE,
 FSF_NEW_$_NEGOTIATE,
 FSF_CHANGE_SCHED_PARAM_$_NEGOTIATE,
 FSF_EXPLICIT_CALL_WITH_DATA_$_NEGOTIATE,
 FSF_EXPLICIT_CALL_WITH_DATA_$_CANCEL,
 FSF_EXPLICIT_CALL_WITH_DATA_$_RENEGOTIATE
} fsf_event_type_t;

typedef struct fsf_serv_job_t {
 fsf_sjob_state_t state;
 pthread_t thread_id;
 fsf_event_type_t event_$_type_queuing_point;
 fsf_msg_type_t type;
 /*admited types are: FSF_NEGOTIATE_CONTRACT,
 FSF_CANCEL_CONTRACT,
 FSF_RENEGOTIATE_CONTRACT,
 FSF_REQUEST_CONTRACT_RENEGOTIATION,
 FSF_REQUEST_CHANGE_QUALITY_AND_IMPORTANCE,
 FSF_RETURN_SPARE_CAPACITY */
 int error;
 union {
 fsf_renegotiate_contract_in_t negotiate_contract;
 fsf_cancel_contract_in_t cancel_contract;
 fsf_renegotiate_contract_in_t renegotiate_contract;
 fsf_request_contract_renegotiation_in_t request_contract_renegotiation;
 fsf_request_change_quality_and_importance_in_t
 request_change_quality_and_importance;
 fsf_return_spare_capacity_t return_spare_capacity;
 } in;
} fsf_serv_job_t;

Queue for the indexes of service jobs required by the scheduler that must be attended by the service
thread :

typedef struct {
 int max_size; //FSF_MAX_N_SERVICE_JOBS
 int size;
 int index;
 pthread_mutex_t mutex;
 pthread_cond_t cond;
 int *buffer; //FSF_MAX_N_SERVICE_JOBS
} fsf_int_queue_t;

3.1.5 Synchronization objects

This structure is managed in the application scheduler. Only a handle (the index in the array conveniently
complemented with a pseudo-unique mask) is returned to the user. The servers array of this structure is
managed by the put_index and get_index fields.

IST-2001 34140 Deliverable D-OS.1v3

13

If a synchronization object has servers queued at the time of destroying it, the servers are unbound and
they become ready to start when they are bound again (as if they would have been signalled). In this way
both threads and servers are reusable independently from each other.

The signalling time is not stored with the event. Events are just accumulated in a counter. This makes
the signalling time independent from the activation time. They happen to be the same just when the serv-
er is already waiting for the signal, but not when there are events already accumulated in the synchroni-
zation object. In this case the activation time used to evaluate the possible miss of a deadline is the time
at which the server asks for the synchronization object to activate it (calling fsf_schedule_triggered_job
or fsf_timed_schedule_triggered_job).

typedef struct {
 int handle;
 char servers[FSF_MAX_N_SERVERS_IN_SYNCH_OBJECT];
 char events;
 char get_index;
 char put_index;
 char state; // EMPTY(0) or ACTIVE(1)
} fsf_synch_sched_obj_t;

3.1.6 App-sched parameters

The communication between the service contract API in the user space and the scheduler is realized by
means of these three functions : explicit_call_with_data(), pthread_setappschedparam() and
pthread_create(). In these two latter cases it is necessary to fill a structure of the type
fsf_appschedparam_t to instruct the scheduler with the kind of action to take.

typedef enum { FSF_BIND, FSF_UNBIND, FSF_NEGOTIATE} fsf_command_t;

typedef struct {
 fsf_command_t command;
 union {
 fsf_server_id_t server;
 fsf_negotiate_contract_in_t negotiate_contract;
 } val;
} fsf_appschedparam_t;

3.1.7 Constants for signalling the scheduler in the info field

Since the scheduler is waiting to receive only one signal, each different action to execute is selected by
means of the info field that is attached to the signal reception. This field is divided in two parts: the upper
16 bits hold the kind of action to execute, and the lower 16 bits have the index of the target entity in its
corresponding list (service_job or server). The constants that may be sent in the upper 16 bits part are
the following:

#define FSF_SERVICE_JOB_DONE 0x00010000
#define FSF_REPLENISH_SERVER 0x00020000
#define FSF_SIGNAL_SERVER 0x00030000
#define FSF_BUDGET_EXPIRED 0x00040000
#define FSF_DEADLINE_NEWJOB_TIMEOUT 0x00050000

3.1.8 Explicit data exchanged with the scheduler

When the service contract API in the user space communicate with the scheduler by means of the func-
tion explicit_call_with_data(), the structures used are of the type fsf_in_msg_t and
fsf_out_msg_t.These are basically union structures that may hold a large number of data types and im-
plement most of the calls that are made to the scheduler. These calls and their inner types can be seen at
the beginning of the file fsf_types.h

IST-2001 34140 Deliverable D-OS.1v3

14

3.2 Scheduler operation

As it is usual, the core of the scheduler is an infinite loop waiting for events to occur. As it can be seen
in Figure 7, after initialization, the scheduler waits for tasks to be created. At task creation time the
scheduler receives the prospective contract parameters, send them to the service thread and after a suc-
cessful acceptance test and redistribution of the spare capacity, the contract is activated and the control
returns to the scheduler. Then, the scheduler programs the timers associated to the server and the timer
associated to the CPU clock of the thread. The signal sent by these timers is sent along with the server
index as part of the additional information field

3.3 Server operation

In this implementation, servers behave basically as the POSIX sporadic servers. Depending on whether
their workload is indeterminate or bounded they may go to the background or not, respectively. Figure
8 shows the state chart of an FSF server. It is only when the server is in the active state that its budget is

Figure 7. State chart of the FSF_FP scheduler

Initiate Scheduler

do/ Prepare to receive the scheduler signal
do/ Create thread-specific data keys
do/ Initialize the global data structure
do/ Create the service thread
do/ Set event mask

Timed wait

entry/ setreplyinfo if there is a pending reply
do/ posix_appsched_execute_actions
exit/ Clean scheduling actions

POSIX_APPSCHED_NEW /
negotiate contract, create,

and bind or unbind

POSIX_APPSCHED_EXPLICIT_
CALL_WITH_DATA / Return the

adequate reply data

Attend the functions:

fsf_negotiate_contract_for_new_thread
generated by appschedparam with FSF_NEGOTIATE

command
fsf_negotiate_contract_for_myself(I'nt SCHED_APP),

generated by appschedparam with FSF_NEGOTIATE
command
fsf_bind_thread_to_server(I'nt SCHED_APP),

generated by appschedparam with FSF_BIND command

POSIX_APPSCHED_SIGNAL

Kinds of events or situations that are managed after the reception of
the scheduler signal:

FSF_SERVICE_JOB_DONE
FSF_CHANGE_SCHED_PARAM_$_NEGOTIATE
FSF_NEW_$_NEGOTIATE
FSF_EXPLICIT_CALL_WITH_DATA_$_NEGOTIATE
FSF_EXPLICIT_CALL_WITH_DATA_$_CANCEL
FSF_EXPLICIT_CALL_WITH_DATA_$_RENEGOTIATE

FSF_SIGNAL_SERVER
FSF_REPLENISH_SERVER
FSF_BUDGET_EXPIRED
FSF_DEADLINE_NEWJOB_TIMEOUT

POSIX_APPSCHED_CHANGE_
SCHED_PARAM / negotiate
contract, create, and bind or

unbind

Used to:

FSF_NEGOTIATE
FSF_BIND
FSF_UNBIND

Used to implement the functions:

fsf_create_synch_obj
fsf_signal_synch_obj
fsf_destroy_synch_obj
fsf_negotiate_contract
fsf_get_contract
fsf_cancel_contract
fsf_renegotiate_contract
fsf_request_contract_renegotiation
fsf_get_renegotiation_status
fsf_request_change_quality_and_importance
fsf_schedule_timed_job
fsf_schedule_triggered_job

fsf_get_available_capacity
fsf_get_total_quality
fsf_get_cputime
fsf_get_remaining_budget
fsf_get_budget_and_period

POSIX_APPSCHED_TERMINATE /
unbind it and eliminate the thread

record

SIGTERM

fsf_timed_schedule_triggered_job
fsf_set_service_thread_data
fsf_negotiate_group
fsf_get_service_thread-data
fsf_set_service_thread_preemption_level
fsf_get_service_thread_preemption_level

IST-2001 34140 Deliverable D-OS.1v3

15

consumed. If the server has a thread bound to it, it may only execute if the server is in the active state or
if being in the timed state the thread gets into the rr_slice state (see the following section on the thread
states).

3.4 Threads states

Figure 9 shows the possible states of a thread by means of a state chart. The Timed state is reached due
to exhaustion of the budget assigned by the server to which the thread is bound, while the Blocked state
is reached due to auto suspension, or by blocking waiting for any kind of resource. The Unbound state
is forced by the manager using the FSF corresponding primitives fsf_unbind_thread_from serv-
er or fsf_cancel_contract.

Figure 8. State chart of an FSF server

Event
Waiting

Time
Waiting

Time Event
Waiting

Sporadic_Server_Rules

Active

Thread
Suspended

Thread
Running

Timed

Active

Thread
Suspended

Thread
Running

Timed

Signal_server

Timer_signal

Signal_server

Timer_signal

{Indeterminate workload servers
can not get out of this state}

Thread
Suspended

Thread
Running

Ready

Block

End of budget

fsf_timed_schedule_triggered_job

fsf_schedule_timed_job

fsf_scheduled_triggered_job

Replenishment

Figure 9. State chart of a thread

Unbound

Bound

Blocked

Ready to execute

Timed
RR_slice suspendedActive

Blocked

unbind

cancel

bind

Ready to execute

Timed
RR_slice suspendedActive

Timed
RR_slice suspendedRR_slice suspendedActive

ready

end of budget

block

replenishment

block
{Bounded workload servers
can not reach the RR_slice
state, they are always
suspended in the Timed
state}

IST-2001 34140 Deliverable D-OS.1v3

16

3.5 Background round-robin scheduler

Whenever an indeterminate workload server is in the Timed state its bound thread is inserted in a circular
singly linked list. Each thread in this list is able to execute for an interval given by the
FSF_RR_SLICE_CPU_TIME constant (which is in the fsf_configuration_parameters.h file). The
threads bound to specific background servers are also in this list and share the background capacity. All
the threads in the background are at the background priority, which is 2 levels below the lowest normal
FSF thread priority, given by the FSF_LOWEST_THREAD_PRIORITY constant. The background priority val-
ue is the lowest priority used in the implementation.

3.6 Getting the OS configuration information

The values written in the MaRTE OS configuration_parameters.ads file are critical to the system
operation. To be able to chose the appropriate values in each configuration circumstance, a program that
calculates the most sensible values using the fsf_configuration_parameters.h file is provided.
The program is in the sizes.c file and may be compiled and run in any linux distribution. It uses the
fsf_configuration_parameters.h and the fsf_types.h files so these headers must be visible
from the compilation directory.

During the initialization of the system the coherence of the configuration values given in the file
fsf_configuration_parameters.h is verified, in particular the conformity rules shown in Figure
10 are tested and an error is returned if they are not satisfied.

Figure 10. Map of priorities used in the FPS scheduler

31 Max_P <<Max_System_Priority>>
30
.
. S+1 << Max priority used by the service thread >>
.
. S FSF_SCHEDULER_PRIORITY
.
. H FSF_HIGHEST_THREAD_PRIORITY
.
.
. <<Normal FSF user theads>>
.
.
. L FSF_LOWEST_THREAD_PRIORITY
.
. L-1 << Low priority used by the service thread server>>
.
. L-2 << Background Round Robin Scheduler >>
.
2
1 Min_P <<Min_System_Priority>>

Conformity Rules:

Min_P <= L-2; H >= L; S > H; Max_P >= S+1

IST-2001 34140 Deliverable D-OS.1v3

17

4 Design of the FSF_Contract_API methods
Table 1 summarizes the way in which each method of the service contract API is implemented.

Table 1: FSF Service Contract methods (library functions)

Method name Done by Comments on the implementation

fsf_init S & ST initialize the system, creates the scheduler and the
service thread

fsf_initialize_contract CT assigns default values to a user declared object
fsf_set_contract_basic_parameters
fsf_get_contract_basic_parameters
fsf_set_contract_timing_requirements
fsf_get_contract_timing_requirements
fsf_set_contract_reclamation_parameters
fsf_get_contract_reclamation_parameters
fsf_set_contract_synchronization_parameters
fsf_get_contract_synchronization_parameters
fsf_set_contract_preemption_level
fsf_get_contract_preemption_level

CT passive library functions that set and get parameters
of an already initialized contract object

fsf_create_synch_obj
fsf_signal_synch_obj
fsf_destroy_synch_obj

S use posix_appsched_invoke_withdata

fsf_negotiate_contract S & ST uses posix_appsched_invoke_withdata
fsf_negotiate_contract_for_new_thread uses pthread_create with adequate appschedparams
fsf_negotiate_contract_for_myself pthread_setappschedparam commands: negotiate
fsf_bind_thread_to_server S pthread_setappschedparam commands: bind
fsf_unbind_thread_from_server pthread_setappschedparam commands: unbind
fsf_get_server uses pthread_getspecific_from
fsf_get_contract use posix_appsched_invoke_withdata
fsf_cancel_contrac S & ST
fsf_renegotiate_contract
fsf_request_contract_renegotiation
fsf_set_service_thread_data
fsf_negotiate_group
fsf_get_renegotiation_status S
fsf_get_service_thread_data
fsf_set_service_preemption_level
fsf_get_service_preemption_level
fsf_request_change_quality_and_importance S & ST
fsf_schedule_timed_job use posix_appsched_invoke_withdata, and the serv-

ice thread is called for returning the unused capacityfsf_schedule_triggered_job
fsf_timed_schedule_triggered_job
fsf_get_available_capacity S use posix_appsched_invoke_withdata
fsf_get_total_quality
fsf_is_admission_test_enabled
fsf_strerror

CT read the configuration parameter

fsf_get_cputime S use posix_appsched_invoke_withdata
fsf_get_remaining_budget
fsf_get_budget_and-period
fsf_init_shared_object
fsf_get_shared_object_handle
fsf_get_shared_object_mutex
fsf_set_shared_obj_preemption_level
fsf_get_shared_obj_preemption_level

CT use a global table shared and protected with a mutex

(S: FSF Scheduler, ST: Service thread, CT: Calling thread)

IST-2001 34140 Deliverable D-OS.1v3

18

Figure 11 shows by means of a sequence diagram the threads that come into play in response to each
kind of interaction with which the different functions are implemented. These kinds of function calls are
used in Table 1 to describe the API operations.

5 Acceptance test and reclamation algorithm
In order to calculate the schedulability of the admitted servers, a “pessimistic” though simple utilization
bound algorithm has been implemented, that can handle tasks with synchronization and deadlines small-
er than or equal to the task periods [1]. The test is applied each time a contract is negotiated and maintains
or recalculates as necessary a number of accumulative values, which are updated whenever the test is
made and a contract admitted, after a successful renegotiation or when a server is to be cancelled. Among
these values we calculate the “utilization slack” of each server; the minimum of these slacks is the utili-
zation that will be safely shared by the reclamation algorithm.

The terms that are used in the description of the algorithms, which are also held in a data structure asso-
ciated to each server, are:

U Utilization, due to its own budget and period and forced by higher or equal priority servers
B Maximum blocking caused by lower priority servers
P Priority considered in the analysis, calculated using the fsf_priority_map()function
T Period considered in the analysis
D Deadline considered in the analysis, if it was not specified the maximum period is used.
A Utilization slack or available. It is the difference between U and the server’s “utilization limit”
N One plus the number of higher or equal priority severs

Other terms used:

Figure 11. Interaction according to the kind of operation

===

User Thread Scheduler Service thread

CT: The function is
executed only in the
caller thread space

S: The function
requires action of the
FSF scheduler

S & ST: This kind of
functions involve the FSF
scheduler and the service
thread, and usually takes a
longer time. The non
blocking version of this
functions have no return
message at the end.

===

IST-2001 34140 Deliverable D-OS.1v3

19

Servers_set the set of servers already admitted, it can be empty
i indicates one server in the set if it is not empty
Critical_sections_set is the set of critical sections of a certain server
s a critical section in a set
C the worst case execution time in a certain critical section
U_available the total available utilization (the minimum of all the slacks)

The formulation of the modified utilization bound test used is the next:

For the analysis of the server i consider all the servers with priority equal to or higher than P_i and group
them into the following two sets:

H1, singly preemptive tasks: servers with periods >= T_i

Hn, multiply preemptive tasks: servers with periods < T_i

The effective utilization for server i is:

The utilization bound for the server i is:

And the schedulability test is :

5.1 Automatic priority assignment

When the Implementation_Specific module operations for setting preemption levels of servers or shared
objects are not used, the system will use a simple deadline monotonic algorithm to calculate the running
priorities of the servers. In this case the maximum priority will be considered for all the critical sections
of the system. If the user assigns the preemption level of any server or shared object in the system, it is
the user responsibility to do the same for all the other servers and shared objects, and in this case the
automatic priority assignment capability is disabled.

5.2 Acceptance test when adding a new server

When a new contract is evaluated, a prospective acceptance test data structure is used to perform the test
and calculate all the server values, which includes the reassignment of deadline monotonic priorities if
preemption levels are not specified. If the calculated utilizations are below their utilization bounds and
correspondingly the available utilization for all the servers is greater than or equal to zero, the contract
is admitted and the temporary structure becomes permanent. Then the remaining spare utilization is
shared among the servers. To impose the new values, the service thread lowers its own priority level just
above the background, waiting for no other server to execute. Then, it immediately increases its priority
to a level higher than the scheduler’s priority and assigns new budgets and periods to the servers; if the
automatic priority assignment capability is enabled, the new priorities are also set for all the servers; this

fi
Cj
Tj

j Hn∈
∑

Ck
Ti

Bi Ci+
Ti

-----------------+
k H1∈
∑+=

n num Hn() 1+=

∆i
Di
Ti
----- 1≤=

Ubound n ∆, i()
n 2∆i()1 n⁄ 1–() 1 ∆i–+

∆i



= 0 5, ∆i 1≤ ≤,
0 ∆i 0 5,≤ ≤,

fi Ubound n ∆i,()≤

IST-2001 34140 Deliverable D-OS.1v3

20

makes effective the recently accepted contract. Finally, the service thread simply returns to its normal
operation priority.

For adding a new server a to the current Servers_set, the following algorithm is used to update the ac-
ceptance test fsf_at_data_t accumulative structures of each server:

-- Recalculate the blocking terms of the present servers:
For i in Servers_set loop

if P_a < P_i then
for s in the Critical_sections_set of a, loop

if P_s >= P_i then
B_i = Max(B_i, C_s)

end if
end loop

end if
end loop

-- Calculate the blocking term for the new server:
B_a = 0
For i in Servers_set loop

if P_i < P_a then
for s in the Critical_sections_set of i, loop

if P_s >= P_a then
B_a = Max(B_a, C_s)

end if
end loop

end if
end loop

-- Introduce the effect of the new one over the former servers’utilization
For i in Servers_set except for background servers or the service thread loop

if P_a >= P_i then
U_i = U_i + C_a / Min(T_i, T_a)
n_i = n_i + 1
A_i = U_bound(n_i, D_i/T_i) - [U_i + B_i/T_i]
U_available = Min(U_available, A_i)

end if
end loop

-- Finally calculate the utilization of the new server
U_a = C_a/T_a
n_a = 1
For i in Servers_set loop

if P_i >= P_a then
if the new one is not a background server

U_a = U_a + C_i / Min(T_i, T_a)
n_a = n_a + 1

end if
if server i is neither a background server, nor the service thread

A_i = U_bound(n_i, D_i/T_i) - [U_i + B_i/T_i]
U_available = Min(U_available, A_i)

end if
end if

end loop
A_a = U_bound(n_a, D_a/T_a) - [U_a + B_a/T_a]
U_available = Min(U_available, A_a)

5.3 Acceptance test structures maintenance when deleting a server

For removing a server a from the present Servers_set the following algorithm is used:

IST-2001 34140 Deliverable D-OS.1v3

21

-- First take the server a out of the Servers_set 1..n
-- Recalculate the blocking terms:
if the Critical_sections_set of a is not empty then

for i in Servers_set loop
CSmax = 0
if P_a < P_i then

for s in the Critical_sections_set of a, loop
if P_s >= P_i then

CSmax = Max(CSmax, C_s)
end if

end loop
end if
if CSmax >= B_i then

for j in Servers_set loop except i
if P_j < P_i then

for s in the Critical_sections_set of j, loop
if P_s >= P_i then

B_i = Max(B_i, C_s)
end if

end loop
end if

end loop
end if

end loop
end if

-- Recalculates the utilization for all the servers
U_available = 1.0
For i in Servers_set loop

if P_a >= P_i and i is neither a background server nor the service thread then
U_i = U_i - C_a / Min(T_i, T_a)
n_i = n_i - 1
A_i = U_bound(n_i, D_i/T_i) - [U_i + B_i/T_i]

end if
U_available = Min(U_available, A_i)

end loop

5.3.1 Spare capacity sharing algorithms

When the U_availabe obtained after the application of the shown utilization test is greater than zero, this
means that there is some capacity beyond the minimum accepted that can be shared among the servers.
The way of calculating this capacity is similar to the acceptance test in the sense that it uses an auxiliary
fsf_ur_data_t structure for trying the values to assign, and consolidates the values as they prove to
be acceptable by the utilization bound test. The algorithm to do this is:

for each importance level in reverse order loop
calculate the total quality Q_t for this level
for each server i in this level with discrete granularity in reverse quality
order loop

U_share = U_available * Q_i / Q_t
([A]) Reduce U_share to adapt to granularity and also calculate the new
U_available, it must be at least: U_available = U_available - U_share
Q_t = Q_t - Q_i

end loop
for each server i in this level with continuous granularity in reverse quality
order loop

U_share = U_available * Q_i / Q_t
([B]) Calculate new budget and period for U_share, limit them to Cmax and
Tmin, and get sure the extra utilization is under the U_share limit, finally
calculate the new U_available: at least U_available = U_available - U_share
Q_t = Q_t - Q_i

end loop
end loop

IST-2001 34140 Deliverable D-OS.1v3

22

The algorithms used in the sections ([A]) and ([B]) are based in the re-calculation of the available
utilizations (applying the acceptance test as necessary) for each of the different values assigned to the
budget and period of each server. In ([A], the algorithm is applied for the values given in the utilization
set of each contract, In ([B]), instead, it is applied first for the evaluation of the smaller possible period
and then it there is still extra utilization for the increment of the server’s budget. This code is in the
fsf_service_th.c file and it is has enough comments to understand the successive approximation
algorithms.

6 Shared objects management
The initialization of the shared objects and their associated mutexes is performed in the user space. They
are inserted in a shared table that is accessed in a mutually exclusive way by means of a protecting mutex.
The scheduler is not involved in these operations. The protocol given to the user mutexes is the priority
ceiling protocol (the POSIX PTHREAD_PRIO_PROTECT protocol), and the ceiling is raised to the maximum
of the possible user priorities (FSF_HIGHEST_THREAD_PRIORITY). This ceiling may be changed by the
user using the fsf_set_shared_obj_preemption_level operation of the Implementation-Specific
module, but in this case the preemption level of all the shared objects and all the servers must be assigned
by the user. It is the user responsibility to decide whether to use pre-calculated preemption levels for all
servers and shared objects or leave the automatic assignment for them. As it may be expected, even con-
sidering that the system’s automatic priority assignment uses deadline monotonic order for the servers,
since the ceilings are always high, schedulability may be compromised if very long critical sections are
used.

7 Implementation in Ada
The Ada implementation of the FSF Ada API, which is presented in the D-SI.5v3 deliverable, is realized
as an adaptation layer over the C version. In this way, applications that mix both languages may coexist,
and use the FSF services in a coherent way from both programming languages. To keep the configuration
parameters centralized in a single file, the Ada source code of the core package specification of the API,
the file fsf.ads, is obtained by the C preprocessing of the fsf_ads.c file. Also the fsf_c.ads pack-
age is got from the fsf_c_ads.c file in this way. The important issue around this mechanism to get the
Ada source code is that if it is necessary to make any change to a source code file, the makefile must be
updated with the new number of lines of the destination file (see the corresponding rules in the Make-
file file).

The distributed services module is implemented only in the Ada 95 version of the API, but a similar ap-
proach can be used to implement the C API as an adaptation layer on top of the Ada implementation.

8 Organization of the code
The best way to get familiar with the code is by taking a look into the makefile that compiles the FSF
and the test applications. Considering that the fsf_v3 directory is the place for decompressing the distri-
bution file, here we show a list of the directories and files that it creates. The actual number of bytes and
the dates may change:

 Directory of C:\FIRST\fsf_v3

01/04/2005 17:10 4.365 Makefile
05/04/2005 18:33 <DIR> ada
05/04/2005 18:33 <DIR> fsf
10/04/2005 16:05 <DIR> tests
11/04/2005 03:05 <DIR> files-to-change
 1 files 4.365 bytes

IST-2001 34140 Deliverable D-OS.1v3

23

 Directory of C:\FIRST\fsf_v3\ada

22/03/2005 11:58 10.185 btm.adb
22/03/2005 11:58 13.752 btm3.adb
22/03/2005 11:58 10.681 btm_v3.adb
22/03/2005 11:58 6.007 example.adb
22/03/2005 11:58 3.241 fsf-distributed-spare_capacity.adb
22/03/2005 11:58 2.930 fsf-distributed-spare_capacity.ads
22/03/2005 11:58 5.931 fsf-hierarchical.ads
22/03/2005 11:58 4.995 fsf-implementation_specific.adb
22/03/2005 11:58 2.753 fsf-implementation_specific.ads
22/03/2005 11:58 6.467 fsf-shared_objects.adb
22/03/2005 11:58 2.783 fsf-shared_objects.ads
22/03/2005 11:58 11.983 fsf-spare_capacity.adb
22/03/2005 11:58 6.020 fsf-spare_capacity.ads
22/03/2005 11:58 52.422 fsf.ads
22/03/2005 11:58 2.441 fsf_ada_preprocessing.h
22/03/2005 11:58 20.148 fsf_btm_contract.adb
22/03/2005 11:58 1.066 fsf_btm_contract.ads
04/04/2005 20:12 4.173 fsf_c.adb
22/03/2005 11:58 2.970 fsf_c.ads
22/03/2005 11:58 12.745 fsf_conf_pars.c
22/03/2005 11:58 4.064 new_execution_load.adb
22/03/2005 11:58 2.187 new_execution_load.ads
04/04/2005 16:31 15.086 net_functions.adb
01/04/2005 19:15 10.294 net_negotiation.adb
04/04/2005 03:51 14.026 fsf-distributed.ads
04/04/2005 17:14 9.752 net_tx_time.adb
04/04/2005 16:59 6.504 net_mirror.adb
04/04/2005 20:08 5.025 fsf_ada_preprocessing.c
04/04/2005 20:10 3.787 fsf_c_ads.c
07/04/2005 16:30 52.997 fsf_ads.c
05/04/2004 15:30 63.777 fsf_soloproc.adb
05/04/2004 15:31 16.062 fsf-distributed_soloproc.adb
05/04/2005 17:44 6.705 net_mirror_tasks.adb
03/04/2005 17:17 63.516 fsf_completa.adb
05/04/2004 15:30 63.777 fsf.adb
04/04/2005 21:11 28.365 fsf-distributed_completa.adb
05/04/2004 15:31 16.062 fsf-distributed.adb
 37 files 565.679 bytes

 Directory of C:\FIRST\fsf_v3\fsf

05/04/2005 18:33 <DIR> include
05/04/2005 18:33 <DIR> lib
05/04/2005 18:33 <DIR> source
 0 files 0 bytes

 Directory of C:\FIRST\fsf_v3\fsf\include

29/11/2004 12:45 3.156 fsf.h
01/04/2005 03:17 6.591 fsf_configuration_parameters.h
10/02/2005 23:04 3.073 fsf_distributed_spare_capacity.h
20/09/2004 00:00 644 fsf_dynamic_reclaiming.h
28/10/2004 09:22 9.042 fsf_hierarchical.h
09/02/2005 09:48 4.121 fsf_implementation_specific.h
14/10/2004 22:17 7.144 fsf_spare_capacity.h
30/03/2005 00:59 2.366 fsf_ss.h
31/03/2005 01:25 23.053 fsf_types.h
17/02/2004 00:00 1.686 stdbool.h
17/02/2004 00:00 3.739 timespec_operations.h
02/04/2005 19:38 45.372 fsf_core.h
02/04/2005 19:54 6.576 fsf_basic_types.h
02/04/2005 21:50 3.745 fsf_opaque_types.h
02/04/2005 22:51 5.602 fsf_shared_objects.h
04/04/2005 03:56 11.920 fsf_distributed.h
 16 files 137.830 bytes

 Directory of C:\FIRST\fsf_v3\fsf\source

IST-2001 34140 Deliverable D-OS.1v3

24

08/04/2005 01:17 30.086 fsf_ss.c
09/04/2005 19:59 162.510 fsf_scheduler.c
02/04/2005 19:18 70.761 fsf_service_th.c
04/04/2005 20:07 108.609 fsf_contract.c
 4 files 371.966 bytes

 Directory of C:\FIRST\fsf_v3\tests

10/03/2005 01:12 1.857 sizes.c
30/03/2005 17:49 7.984 jitter_test.c
24/02/2005 15:43 18.059 fsf_negotiation_test.c
24/02/2005 15:28 14.584 fsf_synch_obj_test.c
23/02/2005 16:06 19.760 context_switch.c
21/02/2005 19:59 48.908 functions.c
 6 files 111.152 bytes

 Directory of C:\FIRST\fsf_v3\files-to-change

19/02/2005 12:57 14.252 configuration_parameters.ads
13/03/2005 03:44 3.599 execution_load.adb
11/03/2005 13:56 16.944 k-file_system.adb
19/02/2005 12:53 18.782 k-mutexes-internals.adb
19/02/2005 12:49 25.458 k-tasks_operations.adb
13/03/2005 03:44 2.848 marte_os.ads
30/07/2004 11:46 2.709 mgnatmake
29/07/2004 19:03 37.073 posix-signals.adb
04/03/2004 00:00 6.645 kernel_console.adb
04/03/2004 00:00 14.727 kernel_console.ads
 10 files 143.037 bytes

 Total files in list:
 74 files 1.334.029 bytes

IMPORTANT NOTE: For this deliverable to be implemented in MaRTE OS several changes have been
introduced since its original distribution. The version of MaRTE OS that must be used with the D-
OS.1v3 accompanying code is MaRTE OS version 1.42a, plus the files included in the files-to-
change folder.

9 References
[AG01] MaRTE OS: An Ada Kernel for Real-Time Embedded Applications. Mario Aldea Rivas and
Michael González Harbour. International Conference on Reliable Software Technologies, Ada-Europe-
2001, Leuven, Belgium, LNCS, May 2001.

[AG02] POSIX-Compatible Application-Defined Scheduling in MaRTE OS. Mario Aldea Rivas and
Michael González Harbour. Proceedings of 14th Euromicro Conference on Real-Time Systems, Vienna,
Austria, IEEE Computer Society Press, pp. 67-75, June 2002.

[KL93] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour. “A practitioner’s Hand-
book for Real-Time Analysis”. Kluwer Academic Pub., 1993.

IST-2001 34140

Architecture of the Distributed FSF Implementation

Annex 1 to Deliverable D-OS1.v3 (Operating Systems)

Responsible: Universidad de Cantabria

Authors: Michael González Harbour, José Javier Gutiérrez,
Julio Medina, José María Martínez and Juan López

12 April 2005

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

25

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

26

1 Introduction
This document describes the architecture and design of the Distributed First Scheduling Framework
(DFSF). This is the first implementation of FSF on a network, and for simplicity reasons it focuses only
on the core FSF module, and makes some restrictions. This approach will allow us to rapidly develop
and evaluate the core features of the distributed FSF. A future version will eliminate the restrictions and
explore the implementation of the distributed spare capacity module.

The scenario we are handling in this document is a single ethernet network using a modified version of
the RTEP protocol [4], that we will call DFSF_RTEP. To use more networks, it is possible to replicate
the architecture described in this paper.

Some restrictions have been imposed to facilitate the first implementation of DFSF:

• The contract must be negotiated in the node where the send_endpoint that is bound to it is cre-
ated. Otherwise, we would need a distributed synchronization to check that two endpoints are not
bound to the same contract.

• Asynchronous negotiations and renegotiations are not implemented, to avoid the need for a spe-
cial network service thread.

• Deadlines are considered equal to periods.

• Only indeterminate workloads are considered.

• It is mandatory to set the priority (i.e., preemption level) of the message.

• Budget overruns are not reported. An overrunning message is lowered to the background priority
until the next replenishment.

• Deadline misses are not reported.

• No hierarchical scheduling; only one send endpoint can be bound to a server.

• If a station is excluded from the network because it does not respond, its contracts are not
deleted.

Figure 1 shows an overall picture of the architecture of this implementation. It contains the following
modules, whose description appears in the following sections.

• DFSF.Shared_Info: This package contains a protected object called Table, with the information
about the contracts that is shared among all the nodes. The information allows a node to negotiate
a new contract, or renegotiate a previous one.

• DFSF.Servers: This package contains a protected object called Table that stores the information
relative to a server that is local to the node where it is created, and therefore needs not be shared
among the different nodes. The most important piece of this information is the current budget of
each server.

• DFSF.Negotiation: This package contains a protected object called Engine that implements the
state machine associated with the contract negotiations, and all the associated information. To
negotiate a contract there is a negotiation token that must be acquired to ensure mutual exclusion.
Once the negotiation is finished the infromation must be propagated to all the oher nodes. The
information associated with these operations is circulated in the token ring, and this package
manages it as a function of the current negotiation state of each node.

• DFSF_RTEP.Protocol:

The implementation language is Ada, to ease the development of this complex piece of concurrent soft-
ware. The implementtaion will be tested in a distributed system with nodes running MaRTE OS [1], and
the target application is the FIRST project’s robot arm case study [2].

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

27

Figure 1. Architecture of the Distributed FSF implementation, using RTEP, and
showing the main operations and usage scenarios

DFSF.Shared_Info.Table

Add_Server

Update_Server

Delete_Server

Server_Info

Negotiate_Contract

Renegotiate_Contract

DFSF.Servers

Add_Packets

Add_Server

Update_Contract_Sh_Info

Update_Budget_Period

Get_Info

Table

Execute_Pending_Replenish.

Consume_Budget

DFSF.Negotiation.Engine

Manage_Token

Request_Negotiation_Token

Release_Negotiation_Token

Node_Excluded

Add_Server

Delete_Server

Update_Server

DFSF_RTEP.Protocol

Negotiate_Contract

Renegotiate_Contract

Bind_Contract_To_Server

Send_Info

Init_Comm

Receive_Info

RTEP-Thread

FSF

User

Delete_Server

Cancel_Contract

Update_Priority

Update_Dest_Channel

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

28

2 Information
The Distributed FSF implementation over RT-EP is organized as a set of packages, with a parent called
DFSF_RTEP that defines some data types and exceptions. The interface of this package is as follows:

-- This is the parent of the Distributed FSF implementation
-- It contains basic types and exceptions

with DFSF_RTEP;

package DFSF is

 pragma Pure;

 -- The network budget is measured in number of packets of maximum size
 -- A small packet consumes the same budget as a large one (one unit)
 type Network_Budget is range 0..2**16-1;
 for Network_Budget’Size use 16; -- 16 bits

 -- The packet transmission time relates the budget with the time
 -- for the network utilization calculations (nanoseconds)
 Packet_Tx_Time : constant := 500_000; -- nanoseconds

 -- The network max blocking time is used to model the effect of the
 -- non-preemtibility of a packet in the response time of a packet
 -- (nanoseconds)
 Network_Max_Blocking : constant := 500_000; -- nanoseconds

 -- Budget_Error : an attempt was detected to use more budget than
 -- there is available
 Budget_Error : exception;

 -- No_Space: There is no more space for a new server
 No_Space : exception;

 -- Inexistent: The server or contract specified does not exist
 Inexistent : exception;

 -- Wrong_State: The operation invoked is not compatible with the
 -- current state of the negotiation
 Wrong_State : exception;

 -- Bad_Packet_Count: An internal error occurred with the packet accounting
 Bad_Packet_Count : exception;

 -- Not_Supported: An attempt was made to use an unsupported feature
 Not_Supported : exception;

 -- Already_Bound: If attempting to bind an already bounded contract.
 Already_Bound : exception;

 -- Not_Bound: If attempting to un bind an already bounded contract.
 Not_Bound : exception;

end DFSF;

2.1 Shared data structure

There is a data structure containing all the information related to the network contracts. It is replicated
in all the nodes. The protocol has a facility for transferring changes to the data structure. An explicit error
recovery mechanism is not included because it is already built into the protocol. If the information gets
corrupted, the ethernet CRC will be wrong, the packet will be discarded, and a retransmission will occur.
If a packet gets lost, a retransmission will occur after a timeout. If a node fails, it will be excluded from
the network, and the ring will be reconfigured. Therefore, all the errors that are considered probable are
already covered by the RTEP protocol.

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

29

The information that is required to be stored is:

• List of server network information. Each element of the list has:

• Global info, with Service thread info in the future. No service thread will be created for the core
FSF, because there is no capacity sharing needed, and the operations will be very fast. In the
future, is spare capacity is added, a special service thread different from the regular one should be
created, to avoid that delays that can occur in the distributed negotiation could affect the regular
negotiation.

The list of server network information items is stored in an array in which each element is identified by
a Server_Network_Info_Id that acts as the array index. Each array element has a flag indicating whether
it is empty or not. New elements are allocated in the first empty element.

The Server_Id gives access to all the rest of the information required on the sending node.

Interface. The shared data structure is implemented with a package containing a protected object. It has
the following interface:
with Ada.Real_Time;
with DFSF_RTEP;
with Generic_Table;
pragma Elaborate_All(Generic_Table);
use Ada;
with Interfaces;
-- This package contains the data structure that contains the
-- information of all the contracts in the network. It is updated by
-- the DFSF negotiation engine, that propagates the information
-- through the RTEP packets.

package DFSF.Shared_Info is

 -- Information required for specifying each contract
 type Contract_Shared_Info is record
 Budget_Min : Network_Budget;
 Server_Id : DFSF_RTEP.Internal_Server_Handle;
 Period_Max : Real_Time.Time_Span;
 Deadline : Real_Time.Time_Span;
 Sender_Node_Id : DFSF_RTEP.Station_Id;
 Priority : DFSF_RTEP.Priority;
 end record;
 for Contract_Shared_Info’Size use 16 + 16 + 64 + 64 + 8 + 16; -- 23 Bytes

 Null_Info : constant Contract_Shared_Info:=
 (0, DFSF_RTEP.Internal_Server_Id’First,
 Real_Time.Time_Span_Last,
 Real_Time.Time_Span_Last,
 DFSF_RTEP.Station_Id’First,
 DFSF_RTEP.Priority’First);

 -- Maximum number of network contracts (global for all the system)

Table 1: Information to be stored for each network contract

Budget_Min: Number of packets

Period_Max: Time_Span

Priority: Integer

Deadline: Time_Span

Server_Id: Integer

Sender_Node_Id: Integer

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

30

 Max_Contracts : constant:=
 DFSF_RTEP.Number_Of_Internal_Servers*DFSF_RTEP.Number_Of_Stations;

 -- Identifier of the contract information in the table

 type Contract_Shared_Info_Handle is range 0..Max_Contracts;
 for Contract_Shared_Info_Handle’Size use 16; -- use only up to 14 bits
 subtype Contract_Shared_Info_Id is Contract_Shared_Info_Handle
 range 1..Max_Contracts;

 Null_Contract_Shared_Info_Handle : constant
Contract_Shared_Info_Handle:=0;

 package Shared_Table_Pkg is new
 Generic_Table(Contract_Shared_Info_Id,Contract_Shared_Info);

 -- Protected object that contains the table with all the information
 -- for each contract

 protected Table is

 -- Add a server contract that was negotiated in some other node
 -- may raise No_Space. The Id of the new server is returned
 -- It raises No_Space if there is no space for the new server
 procedure Add_Server
 (Info : in Contract_Shared_Info;
 Id : out Contract_Shared_Info_Id);

 -- Update the server contract identified by Id with the new info.
 -- It raises Inexistent if the Id does not reference
 -- a valid contract in the table
 procedure Update_Server
 (Info : in Contract_Shared_Info;
 Id : in Contract_Shared_Info_Id);

 -- Delete the server contract identified by Id from the table
 -- It raises Inexistent if the Id does not reference
 -- a valid contract in the table
 procedure Delete_Server
 (Id : in Contract_Shared_Info_Id);

 -- Return the contract information of the the server contract
 -- identified by Id
 -- It raises Inexistent if the Id does not reference
 -- a valid contract in the table
 function Server_Info
 (Id : in Contract_Shared_Info_Id)
 return Contract_Shared_Info;

 -- Negotiate a new server contract. Accepted returns whether the
 -- new contract was accepted or not. If accepted, the Id of the
 -- new server is returned.
 -- It raises No_Space if there is no space for the new server
 procedure Negotiate_Contract
 (Info : in Contract_Shared_Info;
 Id : out Contract_Shared_Info_Id;
 Accepted : out Boolean);
 -- may raise No_Space

 -- Renegotiate the server contract identified by Id. Accepted
 -- returns whether the new contract info was accepted or not.
 -- It raises Inexistent if the Id does not reference
 -- a valid contract in the table
 procedure Renegotiate_Contract
 (New_Info : in Contract_Shared_Info;
 Id : in Contract_Shared_Info_Id;
 Accepted : out Boolean);

 -- Return the total network utilization by the current servers

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

31

 function Total_Utilization return Float;

 private
 T : Shared_Table_Pkg.Element_Table;
 U_Total : Float:=0.0;
 N_Total : Natural:=0;

 end Table;

end DFSF.Shared_Info;

2.2 Server information

Each node has a list of servers, each identified with a Server_Id that is an integer value valid for its node.
The list is as the list of server network information. It is stored in an array in which each element is iden-
tified by a Server_Id that acts as the array index. Each array element has a flag indicating whether it is
empty or not. New elements are allocated in the first empty element.

Each server contains the information described in the following table:

The Server_Network_Info_Id is a reference to the information in the shared distributed information.

Budgets are expressed as a number of maximum-size packets. A smaller packet consumes one unit, the
same as a maximum-size packet. The server stores the maximum budget, and the current budget. Initial-
ly, the current budget is set equal to the maximum. It also stores the Server_Period, which must be made
equal to the Period_Max value of the server.

The Destination_Node and Port_Id information are stored in the endpoint data structure, and replicated
here for convenience.

Interface. The servers data structure is implemented with a package that has the following interface

with Ada.Real_Time;
with DFSF_RTEP;
with DFSF.Shared_Info;
with Generic_Table;
with Priority_Queues;
pragma Elaborate_All (Priority_Queues);
with Queues;
pragma Elaborate_All (Queues);
use Ada;

-- This package contains the table with information associated with each
-- of the distributed FSF servers in a specific station. The
-- information includes the current budget of the server, and the
-- associated replenishment queue. Operations are included to manage
-- the budgets

package DFSF.Servers is

Table 2: Information to be stored for each server

Server_Network_Info_Id: integer

Current_Budget: integer (number of packets)

Max_Allocated_Budget: integer (number of packets)

Server_Period : time span

Destination_Node: node_id

Port: port_id

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

32

 -- Identifies a distributed FSF server inside the station where it
 -- was created
 subtype DFSF_Server_Id is DFSF_RTEP.Internal_Server_Id;

 -- Information associated with each of the distributed FSF servers
 -- in a specific station
 type DFSF_Server_Info is record
 Contract_Info : DFSF.Shared_Info.Contract_Shared_Info_Id;
 Max_Allocated_Budget : Network_Budget;
 Server_Period : Real_Time.Time_Span;
 Destination : DFSF_RTEP.Station_Handle;
 Channel_Id : DFSF_RTEP.Channel;
 Priority : DFSF_RTEP.Priority;
 end record;

 -- Implementation-specific packages and types

 package Server_Table_Pkg is new
 Generic_Table(DFSF_Server_Id,DFSF_Server_Info);

 type Repl_Operation is record
 Amount : Network_Budget;
 At_Time : Real_Time.Time;
 end record;

 package Repl_Times is new Priority_Queues
 (Size => DFSF_RTEP.Number_Of_Internal_Servers,
 Element => DFSF_Server_Id,
 Priority => Real_Time.Time,
 ">" => Real_Time."<",
 "=" => DFSF_RTEP."=");

 package Server_Queues is new Priority_Queues
 (Size => DFSF_RTEP.Number_Of_Internal_Servers,
 Element => DFSF_Server_Id,
 Priority => DFSF_RTEP.Priority,
 ">" => DFSF_RTEP."<",
 "=" => DFSF_RTEP."=");

 package Repl_Queues is new Queues
 (DFSF_RTEP.Max_RTEP_Packet_At_A_Time,Repl_Operation);

 type Budget_Array is array (DFSF_Server_Id) of Network_Budget;

 type Repl_Queue_Array is array(DFSF_Server_Id) of Repl_Queues.Queue;

 -- Protected object containing the server information that may be
 -- shared among several threads. The budget information is outside
 -- the protected object, beccause it is used only by the RTEP
 -- thread

 protected Table is

 -- Add a new server with the specified attributes. The Id of the
 -- new server is returned in Id.
 -- It raises No_Space if there is no space for the new server
 procedure Add_Server
 (Max_Allocated_Budget : in Network_Budget;
 Server_Period : in Real_Time.Time_Span;
 Server_Priority : in DFSF_RTEP.Priority;
 Id : out DFSF_Server_Id);

 -- Delete the server identified by Id
 -- It raises Inexistent if Id does not refere to a valid server
 procedure Delete_Server
 (Id : in DFSF_Server_Id);

 -- Update the contract info id attribute of the server identified by Id
 -- It raises Inexistent if Id does not refer to a valid server

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

33

 procedure Update_Contract_Shared_Info
 (Id : in DFSF_Server_Id;
 Net_Info : in DFSF.Shared_Info.Contract_Shared_Info_Id);

 -- Update the priority attribute of the server identified by Id
 -- It raises Inexistent if Id does not refer to a valid server
 procedure Update_Priority
 (Id : in DFSF_Server_Id;
 Server_Priority : in DFSF_RTEP.Priority);

 -- Update the budget and period attributes of the
 -- server identified by Id
 -- It raises Inexistent if Id does not refer to a valid server
 procedure Update_Server_Budget_And_Period
 (Id : in DFSF_Server_Id;
 Max_Allocated_Budget : in Network_Budget;
 Server_Period : in Real_Time.Time_Span);

 -- Update the destination and channel id attributes of the server
 -- identified by Id
 -- It raises Inexistent if Id does not refer to a valid server
 procedure Update_Station_And_Channel
 (Id : in DFSF_Server_Id;
 Destination : in DFSF_RTEP.Station_Handle;
 Channel_Id : in DFSF_RTEP.Channel);

 -- Return the information of the server identified by Id
 -- It raises Inexistent if Id does not refer to a valid server
 function Get_Info
 (Id : in DFSF_Server_Id)
 return DFSF_Server_Info;

 -- Return the current budget of the server identified by Id
 -- It raises Inexistent if Id does not refer to a valid server
 function Current_Budget
 (Id : in DFSF_Server_Id)
 return Network_Budget;

 -- Execute all the pending replenishments, and return the current
 -- budget of the server identified by Id
 -- It raises Inexistent if Id does not refer to a valid server
 procedure Execute_Pending_Replenishments
 (Highest_Priority_Server : out DFSF_RTEP.Internal_Server_Handle;
 Highest_Priority : out DFSF_RTEP.Priority);

 -- Add the specified amount of packets to the Packet_Count,
 -- for the server identified by Id
 -- It raises Inexistent if Id does not refer to a valid server
 procedure Add_Packets
 (Id : in DFSF_Server_Id;
 Amount : Network_Budget);

 -- Consume the specified amount of budget (limited to the
 -- current budget), programming its corresponding
 -- replenishment operation, for the server identified by Id
 -- It also decrements from the packet count
 -- It raises Inexistent if Id does not refer to a valid server
 procedure Consume_Budget
 (Id : in DFSF_Server_Id;
 Amount : Network_Budget;
 Timestamp : Real_Time.Time);

 private

 -- Table with the servers
 T : Server_Table_Pkg.Element_Table;

 -- Current budget for every server
 Budget : Budget_Array:= (others => 0);

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

34

 -- Current number of packets pending to be sent for every server
 Packet_Count : Budget_Array:= (others => 0);

 -- Replenishment queues
 Repl_Queue : Repl_Queue_Array;

 -- Queue of first replenishment time for each server
 Server_Repl_Times : Repl_Times.Queue;

 -- Queue of active servers (with packets pending) ordered by their
 -- active priority
 Server_Priorities : Server_Queues.Queue;

 end Table;

end DFSF.Servers;

Internally, each server has a replenishment queue associated. It is a FIFO queue of pending replenish-
ment operations, each with a natural number representing the amount of budget to replenish, and with
the replenishment time. Its size is the same as the size of the send queue (configuration value). Its oper-
ation is as follows:

• If an item is inserted that has the same replenishment time as the last item, instead of creating a
new entry in the queue, the budget amounts are added together.

• If the queue is full and a new replenishment is queued, its budget is added to the last item in the
queue, and its replenishment time is made equal to that of the new element.

• There is a time value called “server_replenished”; it is made equal to the current time during ini-
tialization.

• To execute a pending replenishment (one that has a replenishment time less than or equal to the
current time), the current budget is increased by the associated amount; in addition, if the current
budget was zero, the time value called “server_replenished” is made equal to the replenishment
time of the executed replenishment.

• To consume the budget, it is decremented by the specified amount, and a replenishment operation
is queued, for that amount and for a replenishment time equal to the sum of the server’s period
(Period_Max), and the maximum of the message’s timestamp and the “server_replenished” time.

3 Mechanism to communicate changes to the scheduling table
The packets circulating under RTEP (including tokens, transmit tokens, and info packets) have a fixed-
length field for FSF information, which contains the following information

Table 3: FSF Information to be sent with the packet

FSF_Info_Code: integer with the following possible values:
• No_Op
• Claim_Negotiation_Token
• Wait_For_Action
• Release_Negotiation_Code
• Add_Server
• Delete_Server
• Update_Server

Executive : enumeration of: (initial ,executive_power,final)

Negotiation_Token_Holder

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

35

The Executive flag exists because the node acquiring the negotiation token does not generally coincide
with the node acting as the Token_Master in the regular RTEP behaviour. The flag is used to add exec-
utive power to the FSF_Info_Code. Except for the No_Op and Wait_For_Action codes, if the executive
flag is initial or final, the FSF information is passed to the next node and no further action is taken; if its
value is Executive_Power, the FSF_Info_Code is interpreted and the corresponding actions appropriate
for the node’s state are executed, according to the description below. Initially, except for a node acting
as a Token_Master, when an FSF_Info_Code different from No_Op or Wait_For_Action is generated, it
is passed with the Executive flag set to Initial (we will call it a non-executive code). When a new
Token_Master receives such a code for the first time or if it is the new Token_Master itself the node gen-
erating the code, it sets the Executive flag to Executive_Power (thus converting it to an executive code).
When it receives it again after a full token rotation, it sets it to Final. In this way, we can guarantee that
each code requiring an action is received by all the servers with Executive_Power during a full token
rotation, thus guaranteeing that all the nodes receive it. The No_Op and Wait_For_Action codes are al-
ways sent with the flag set to Initial.

The Negotiation_Token_Holder field is set equal to the node acquiring the negotiation token, and it is set
back to indicate a null node when the negotiation token is released.

The Server_Network_Info_Id field is only set for Add_Server, Replace_Server, or Delete_Server oper-
ation codes, to indicate which server to affect.

The Server_Network_Info field is only set for Add_Server or Update_Server operation codes, to indicate
the server network info of the corresponding server (see Table 1).

The RTEP regular operation, including any error recovery actions, is not modified by the negotiation to-

ken or state. The network nodes can be in five states regarding the FSF information exchange. Figure 2
shows the state diagram. The state changes are only allowed right after sending a packet. The operations
of each state are as follows:

Server_Network_Info_Id

Server_Network_Info:

Table 3: FSF Information to be sent with the packet

Figure 2. State diagram of the FSF distributed negotiation.
All the operation codes shown are “executive”.

 State changes are only allowed right after sending a packet

Idle *

Waiting

Acquiring_
Negotiation_Token

Waiting_To
Release_Token

Negotiation, renegotiation, or
server cancellation

Release_Negotiation_Token,

Claim_Negotiation_Token

Add_Server, Update_Server,
Delete_Server

Negotiation Finished

Negotiating

Negotiation Finished&

Full RTEP

Full RTEP
token rotation

token rotationfull RTEP token rotation

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

36

• Idle: This is the initial state. The first Token_Master sends a No_Op code. When a node receiving
a No_Op code wishes to perform a negotiation, renegotiation, or server cancellation operation it
sends a Claim_Negotiation_Token, and switches to the Negotiation_Token_Holder state. Other-
wise, a No_Op code is sent. If a Claim_Negotiation_Token code is received, the node retransmits
the token and switches to the Waiting state.

• Waiting: A node in this state recirculates the operation code received in the packet with no modi-
fication, except for the case of excluding a node (see below). After an executive
Release_Negotiation_Token code is received and retransmitted, the node switches to the Idle
state. If an executive Add_Server, Update_Server or Delete_Server code is received, the node
performs the requested action, retransmits the same operation code, and then switches to the Idle
state. If a Claim_Negotiation_Token or a Wait_For_Action code is received and the following
node in the ring has to be excluded because it does not respond (see the description of the RTEP
protocol), and it is the Negotiation_Token_Holder, a Release_Negotiation_Token code is sent
instead of the received operation code.

• Acquiring_Negotiation_Token. In this state the node is holding the negotiation token while the
other nodes are being informed about it. Therefore, in this state the node can perform a negotia-
tion with guarantee that the shared information is not being changed in other nodes. If a non-
executive Claim_Negotiation_Token code is received before having received an executive one, it
is retransmitted with no other effect. If an executive Claim_Negotiation_Token code is received
and the node is not the Token_Master, it is also retransmitted with no other effect

If a non-executive Claim_Negotiation_Token code is received after having received an executive
one, or if an executive Claim_Negotiation_Token code is received and the node is the current
Token_Master, the following happens:

• If the negotiation, or renegotiation operation is finished, if the new server is not accepted,
a Release_Negotiation_Token code is sent, and the node switches to the
Waiting_To_Release_Token state.

• If the negotiation or renegotiation is finished and the new server is accepted, or if it is a
server cancellation operation, the corresponding Add_Server, Update_Server or
Delete_Server code is sent, and the node switches to the Waiting_To_Release_Token state.

• If the negotiation or renegotiation is in progress, a Wait_For_Action code is sent and the
node switches to the Negotiating State

• Negotiating. In this state the node can continue the negotiation or renegotiation started during the
Acquiring_Negotiation_Token state. While the negotiation is in progress, if a packet has to be
sent, another Wait_For_Action code is sent. When the negotiation, or renegotiation operation is
finished, upon receiving a packet, the following happens:

• If the new server is not accepted, a Release_Negotiation_Token code is sent, and the node
switches to the Waiting_To_Release_Token state.

• If the negotiation or renegotiation is accepted, the corresponding Add_Server or
Update_Server code is sent, and the node switches to the Waiting_To_Release_Token state.

• Waiting_To_Release_Token. In this state, when an non executive packet is received after having
received an executive one, or if an executive packet is received and the node is the current
Token_Master, the node sends a No_Op packet and then switches to the Idle state. Otherwise, the
received packet is retransmitted.

Interface. The state diagram and the operations described in this section are executed inside the follow-
ing protected object:

with DFSF_RTEP;
with DFSF.Shared_Info;

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

37

-- This package contains the negotiation engine for the distributed
-- FSF It contains the operations required to manage the negotiation
-- state, and manages the DFSF information that is sent with each
-- RTEP packet

package DFSF.Negotiation is

 -- Operation codes transmitted with the RTEP packets
 type DFSF_Op_Code is
 (No_Op, Claim_Negotiation_Token, Wait_For_Action,
 Release_Negotiation_Code, Add_Server, Delete_Server, Update_Server);
 for DFSF_Op_Code’Size use 8;
 for DFSF_Op_Code use (No_Op => 0,
 Claim_Negotiation_Token => 1,
 Wait_For_Action => 2,
 Release_Negotiation_Code => 3,
 Add_Server => 4,
 Delete_Server => 5,
 Update_Server => 6);

 -- State of the negotiation engine for each station
 type DFSF_Negotiation_State is
 (Idle, Waiting, Acquiring_Negotiation_Token,
 Negotiating, Waiting_To_Release_Token);

 -- Executive power of the DFSF operation code
 type Executive_State is (Initial, Executive_Power, Final);
 for Executive_State’Size use 8;
 for Executive_State use (Initial => 0,
 Executive_Power => 1,
 Final => 2);

 -- Information transmitted with the RTEP packets
 type DFSF_Packet_Info is record
 Op_Code : DFSF_Op_Code;
 Executive : Executive_State;
 Negotiation_Token_Holder : DFSF_RTEP.Station_Handle;
 Id : DFSF.Shared_Info.Contract_Shared_Info_Handle;
 Info : DFSF.Shared_Info.Contract_Shared_Info;
 end record;
 for DFSF_Packet_Info’Size use 8 + 8 + 16 + 16 + 23 * 8; -- 29 bytes
 pragma Pack(DFSF_Packet_Info);

 type Negotiation_Result_Type is
 (Idle, In_Progress, Rejected, New_Server_Accepted,
 Update_Server_Accepted, Delete_Server_Accepted);

 ---New...
 type Token_Master_Status is
 (Start_Rotation, End_Rotation, Not_A_Token_Master);

 -- Protected object that contains the negotiation state and manages
 -- the DFSF information sent with the RTEP
 protected Engine is

 -- Initialize the Engine with the Current Node Id
 procedure Init
 (Current_Node : DFSF_RTEP.Station_Id);

 -- Get the initial DFSF packet information, for the first token sent
 procedure Get_Initial
 (Info : out DFSF_Packet_Info);

 -- Manages the DFSF packet information. The information received
 -- in the incoming packet is provided to this operation, and is
 -- updated according to the state. The updated information is
 -- sent with the outgoing packet. The station has to indicate
 -- whether it has the role of the current Token Master or not.
 procedure Manage_Token

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

38

 (Info : in out DFSF_Packet_Info;
 Token_Master : in Token_Master_Status);

 -- This entry suspends the calling thread until the negotiation
 -- token is acquired. The identifier of the current node is
 -- provided in the call
 entry Request_Negotiation_Token;

 -- This procedure releases the negotiation token. It is used
 -- after a rejected negotiation or renegotiation to return the
 -- token
 -- It raises wrong_state if node does not hold the negotiation token
 procedure Release_Negotiation_Token;

 -- This procedure is invoked by the RTEP thread to indicate that
 -- a station -- was excluded from the ring, because it does not
 -- respond. The packet information is updated in the call, if
 -- necessary
 procedure Node_Excluded
 (Excluded_Node : DFSF_RTEP.Station_Id;
 Info : in out DFSF_Packet_Info);

 -- This function indicates whether the current station is
 -- holding the negotiation token or not.
 function Has_Negotiation_Token return Boolean;

 -- This procedure is invoked to indicate that a negotiation was
 -- accepted, and therefore its information must be propagated
 -- to all the nodes in the system, and then the negotiation
 -- token must be released.
 -- It raises wrong_state if node does not hold the negotiation token
 procedure Add_Server
 (Id : DFSF.Shared_Info.Contract_Shared_Info_Id;
 Info : DFSF.Shared_Info.Contract_Shared_Info);

 -- This procedure is invoked to indicate that a renegotiation was
 -- accepted, and therefore its information must be propagated
 -- to all the nodes in the system, and then the negotiation
 -- token must be released.
 -- It raises wrong_state if node does not hold the negotiation token
 procedure Update_Server
 (Id : DFSF.Shared_Info.Contract_Shared_Info_Id;
 Info : DFSF.Shared_Info.Contract_Shared_Info);

 -- This procedure is invoked to indicate that a server was
 -- cancelled, and therefore this event must be propagated
 -- to all the nodes in the system, and then the negotiation
 -- token must be released.
 -- It raises wrong_state if node does not hold the negotiation token
 procedure Delete_Server
 (Id : DFSF.Shared_Info.Contract_Shared_Info_Id);

 -- Return the state of the negotiation engine
 function State return DFSF_Negotiation_State;

 private

 Self_Id : DFSF_RTEP.Station_Handle:=0;
 Current_State : DFSF_Negotiation_State:=Idle;
 Holding_Negotiation_Token : Boolean:=False;
 Negotiation_Result : Negotiation_Result_Type:=Idle;
 Shared_Id : DFSF.Shared_Info.Contract_Shared_Info_Id;
 Shared_Info : DFSF.Shared_Info.Contract_Shared_Info;

 end Engine;

end DFSF.Negotiation;

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

39

4 RT-EP with budget control
Currently, RTEP has the following user-level operations:

• Init_Comm

• Send_Info

• Receive_Info

• Try_Receive_Info

To support the FSF contracts, in the Send_Info procedure the Destination_Station_Id and the
Channel_Id parameters are replaced with a Server_Id parameter, which contains the information neces-
sary to identify the send endpoint (including the destination and channel).

In addition, we have to add new operations to perform the negotiations, renegotiations, and cancellation
of servers. These are blocking operations that suspend the calling thread while the negotiation is in
progress.

The new user interface of RTEP is therefore as follows. There is a parent package that contains the con-
figuration data, exceptions, and basic types. Its specification is:

with Interfaces;

package DFSF_RTEP is

 pragma Pure;

 -- RTEP_Task_Prio: Specifies the priority of the RT-EP internal
 -- communication task. It also sets the ceiling of the
 -- protected objects involved.
 RTEP_Task_Prio: constant := 30;

 -- Maximum number of user bytes per packet (29 bytes for the DFSF headers)
 Max_Rt_Ep_MTU : constant := 1492 - 29;

 -- Number of reception channels
 Number_Of_Channels : constant := 10;

 -- Number of internal DFSF servers per station
 Number_Of_Internal_Servers : constant:=10;

 -- Maximum number of packets that can be queued with the same priority
 Max_Queued_Element_Same_Priority : constant Integer := 10;

 -- Maximum number of simultaneous pending packets
 Max_RTEP_Packet_At_A_Time : constant Integer :=
 Max_Queued_Element_Same_Priority * 256 * Number_Of_Channels;

 -- In Number_Of_Stations we define the number of configured stations.
 Number_Of_Stations : constant := 2;

 -- identifier of the RTEP protocol
 Rt_Ep_Protocol_Number : constant := 16#1000#;

 -- Device name
 Device_Name : constant String := "/dev/eth0";

 -- Max_retries for packet retransmission, before excluding a station:
 RTEP_Error_Max_Retries : constant := 3;

 -- Timeouts --

 -- Timeout to determine that a packet has been lost
 -- The time MUST be in nanoseconds.

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

40

 RTEP_Communication_Timeout : constant := 250_000_000; -- 250; -- 250 usec
 -- The time MUST be in nanoseconds.
 RTEP_Comunication_Initialitation_Timeout : constant
 := 10_000_000_000;-- 1 sec.

 -- Delay --

 -- Delay between receiving and sending a token.
 -- With this delay we can reduce the processor overhead.
 -- The Time MUST be in nanoseconds.

 subtype Enable_RTEP_Delay is Boolean range True .. True;

 RTEP_Delay : constant := 80_000; -- 80 usec

 -- Debug_Modes --

 subtype Enable_RTEP_Core_Debug is Boolean range False .. False;

 -- Exceptions :
 -- Station_Not_Valid : If the station is no longer in the ring.
 Station_Not_Valid : exception;
 -- Station_Not_Found : If the station isn’t in the logical ring
 Station_Not_Found : exception;
 -- Invalid_Channel : If the channel is not available
 Invalid_Channel : exception;
 -- Info_Length_Overflow : If we try to send more than Max_Rt_Ep_MTU
 Info_Length_Overflow : exception;
 -- Creation_Error : If not being able creating the queues
 Creation_Error : exception;
 -- Unexpected_Error : If an unknown error has occurred
 Unexpected_Error : exception;
 -- Initialization_Error :If an error initializing the protocol.
 Initialization_Error : exception;

 -- RT-EP Station_ID --

 -- The Station Identifier within the protocol.
 type Station_Handle is new
 Interfaces.Unsigned_16 range 0..Number_Of_Stations;
 for Station_Handle’Size use 16; -- 16 bits for the Station_ID
 subtype Station_ID is Station_Handle range 1..Number_Of_Stations;

 Null_Station_Handle : constant Station_Handle:=0;

 -- The station position in the ring
 subtype Position is Integer range 1..Number_Of_Stations;

 -- RT-EP Priority --

 -- The priority of the messages
 type Priority is new Interfaces.Unsigned_8
 range 1..Interfaces.Unsigned_8’Last;
 for Priority’Size use 8;

 -- RT-EP Channel --

 -- Identifier of a reception channel
 type Channel is new Interfaces.Unsigned_16 range 1 .. Number_Of_Channels;

 -- RT-EP Internal Server Id --

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

41

 -- This is an internal server id for the purpose of DFSF_RTEP only
 -- Do not confuse with the regular FSF Server_Id
 type Internal_Server_Handle_T is range 0..2**16-1;
 for Internal_Server_Handle_T’Size use 16;

 subtype Internal_Server_Handle is Internal_Server_Handle_T
 range 0..Number_Of_Internal_Servers;
 subtype Internal_Server_Id is Internal_Server_Handle_T
 range 1..Number_Of_Internal_Servers;

 Null_Server_Handle : constant Internal_Server_Handle:=0;

end DFSF_RTEP;

With the exception of the initialization operation, the main user operations for RTEP are in the following
package:

with Ada.Streams; use Ada.Streams;
with Ada.Real_Time; use Ada;
with DFSF.Shared_Info;

package DFSF_RTEP.Protocol is

 -- Get_Station_ID --

 -- Will return the station identifier of the current station.
 -- On error will raise Station_Not_Found.

 function Get_Station_ID return Station_ID;

 -- Get_Station_ID_By_Name --

 -- Will return the station identifier of the station labeled
 -- by Station_Name in the ring configuration.
 -- On error will raise Station_Not_Found.

 function Get_Station_ID_By_Name
 (Station_Name : in String)
 return Station_ID;

 -- Get_Station_ID_By_Position --

 -- Will return the station identifier of the station placed in
 -- position Pos in the logical ring.

 function Get_Station_ID_By_Position
 (Pos : in Position)
 return Station_ID;

 -- Send_Info --

 -- Send_Info is used to send Data over the network.
 -- You have to provide the destination MAC addres (Destination_Address)
 -- the channel identifier of the reception task (Channel_ID)
 -- the priority of the packet.
 -- and the length of the data in bytes.

 -- Raise on Error:
 -- Station_Not_Valid

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

42

 -- Station_Not_Found
 -- Invalid_Channel
 -- Unexpected_Error
 -- Info_Length_Overflow
 -- Inexistent : If the Internal_Server_Id does not refere to a valid server

 -- Generic Send Info --

 generic
 type Data_Type is private;
 procedure Generic_Send_Info
 (Server_ID : in Internal_Server_Id;
 Data : in Data_Type;
 -- Data_Priority : in Priority;
 Timestamp : in Real_Time.Time := Real_Time.Clock);

 -- Recv_Info --

 -- Recv_Info reads from the Chanel_ID the highest information Data
 -- and store it in Data. The length is stored in Size in bytes and
 -- the priority of the message is stored in Data_Priority.

 -- Raise on Error:
 -- Invalid_Channel
 -- Unexpected_Error

 -- Generic Recv_Info --

 generic
 type Data_Type is private;
 procedure Generic_Recv_Info
 (Source_Station_ID : out Station_ID;
 Channel_ID : in Channel;
 Data : out Data_Type;
 Data_Priority : out Priority);

 -- Generic Try_Recv_Info --

 -- if No Elements in the queue, Received will set to false.
 generic
 type Data_Type is private;
 procedure Generic_Try_Recv_Info
 (Source_Station_ID : out Station_ID;
 Channel_ID : in Channel;
 Data : out Data_Type;
 Data_Priority : out Priority;
 Received : out Boolean);

 -- Any_Info --

 -- Any_Info checks if there is any data to be received in the specified
 -- Channel_ID. The caller process MUST assign its ID to
 -- the channel_id variable. Returns: True if threre is Data to be received.

 -- Raise on Error:
 -- Invalid_Channel
 -- Unexpected_Error

 function Any_Info
 (Channel_ID : in Channel)

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

43

 return Boolean;

 --- RT-EP with Streams ---

 -- Recv_Info --

 -- Recv_Info reads from the Chanel_ID the highest information Data
 -- and store it in Data. The length is stored in Size in bytes and
 -- the priority of the message is stored in Data_Priority.

 -- The Recv_Info function updates the written offset to the size of the
 -- receiving packet and the read offset to 0, so you can start reading
 -- from the beginning.

 -- Raise on Error:
 -- Invalid_Channel
 -- Unexpected_Error

 procedure Recv_Info
 (Source_Station_ID : out Station_ID;
 Channel_ID : in Channel;
 Data : out Stream_Element_Array;
 Last : out Stream_Element_Offset;
 Data_Priority : out Priority);

 -- Try_Recv_Info --

 -- if No Elements in the queue, Received will set to false.
 procedure Try_Recv_Info
 (Source_Station_ID : out Station_ID;
 Channel_ID : in Channel;
 Data : out Stream_Element_Array;
 Last : out Stream_Element_Offset;
 Data_Priority : out Priority;
 Received : out Boolean);

 -- Send_Info --

 -- Send_Info is used to send Data over the network.
 -- You have to provide the destination MAC addres (Destination_Address)
 -- the channel identifier of the reception task (Channel_ID)
 -- the priority of the packet.and the length of the data in bytes.
 --

 -- Raise on Error:
 -- Station_Not_Valid
 -- Station_Not_Found
 -- Invalid_Channel
 -- Unexpected_Error
 -- Info_Length_Overflow
 -- Inexistent : If the Internal_Server_Id does not refere to a valid server
 procedure Send_Info
 (Server_ID : in Internal_Server_Id;
 Data : in Stream_Element_Array;
 -- Data_Priority : in Priority;
 Timestamp : in Real_Time.Time := Real_Time.Clock);

 -- Negotiate_Contract --

 -- Negotiate a new contract for the specified destination station,
 -- channel id, and contract information. If accepted, create a new
 -- server, and propagate the information to all the stations.

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

44

 -- Accepted indicates whether the renegotiation is accepted or
 -- not. If accepted, the id of the server is returned in Id It
 -- raises DFSF.No_Space if the maximim number of servers had been
 -- reached

 procedure Negotiate_Contract
 (Info : in DFSF.Shared_Info.Contract_Shared_Info;
 Id : out Internal_Server_Id;
 Accepted : out Boolean);

 -- Bind_Contract_To_Server --

 -- It raises No_Space if there is no space for the new server
 procedure Bind_Contract_To_Server
 (Destination_Station : in Station_ID;
 Channel_Id : in Channel;
 Id : in Internal_Server_Id);

 -- Renegotiate_Contract --
 -- ------------------------
 -- Renegotiate the contract associated with the server identified
 -- by Id, using the contract information in New_Info.
 -- Accepted indicates whether the renegotiation is accepted or
 -- not. If accepted, the new information is propagated to all
 -- the stations and used for all subsequent message transmission
 -- through the server.
 -- It raises DFSF.Inexistent if Id does not reference a valid server

 procedure Renegotiate_Contract
 (New_Info : in DFSF.Shared_Info.Contract_Shared_Info;
 Id : in Internal_Server_Id;
 Accepted : out Boolean);

 -- Cancel_Contract --

 -- Delete the server identified by Id, propagating the change to
 -- all the stations
 -- It raises DFSF.Inexistent if Id does not reference a valid server

 procedure Cancel_Contract
 (Id : Internal_Server_Id);

 -- Get_Contract --

 -- It raises Inexistent if the Id does not reference
 -- a valid contract in the table
 function Get_Contract
 (Id : Internal_Server_Id)
 return DFSF.Shared_Info.Contract_Shared_Info;

 -- Unbind_Contract_To_Server --

 procedure Unbind_Contract_From_Server
 (Id : in Internal_Server_Id);

-- private

-- Tx_Channel : constant Channel := 0;

end DFSF_RTEP.Protocol;

IST-2001 34140 Annex 1 to Deliverable D-OS1v3

45

Internally, the following modifications are needed for implementation of sporadic servers in RTEP, to
control budget consumption:

• The send queue is as before, but with the addition of a timestamp field.

• When a message is queued into a send queue, the associated timestamp value is stored with it in
the queue.

• When the priority-arbitration token arrives at the node, the pending replenishments, if any, are
executed. Then, if the current budget is larger than 1, the priority of the message to be sent is the
message’s priority; otherwise, it is the background priority (the minimum priority, by default).

• When the message is sent with its own priority, a budget of one unit is consumed.

5 Message partitioning
Message partitioning is done outside RT-EP, with a procedural interface that is executed by the user
thread when sending and receiving messages. Therefore, it has no impact on the design and operation of
the protocol. For efficiency, all the packets corresponding to the same message will have the same times-
tamp.

6 References
[1] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for Real-Time Embedded Applica-

tions”. Proceedings of the International Conference on Reliable Software Technologies, Ada-
Europe 2001, Leuven, Belgium, in Lecture Notes in Computer Science, LNCS 2043, May
2001.

[2] Michael González Harbour, José María Martínez, “FIRST Deliverable D-CS1.1-v1 (Teleoper-
ated Robot Arm)”, 8 May 2004

[3] Juan López Campos, J. Javier Gutiérrez, and Michael González Harbour. “The Chance for Ada
to Support Distribution and Real-Time in Embedded Systems”. Intl. Conference on Reliable
Software Technologies, Ada-Europe-2004, Palma de Mallorca, Spain, June 2004.

[4] J.M. Martínez, M. González Harbour, and J.J. Gutiérrez. “RT-EP: A Fixed-Priority Real Time
Communication Protocol over Standard Ethernet”. International Conference on Reliable Soft-
ware Technologies, Ada-Europe, York, UK, June 2005.

