
AFDX Training Emulator
User's Guide

v0.1

Copyright (C) 2015 Universidad de Cantabria, SPAIN

Jesús Fernández, Héctor Pérez, J. Javier Gutiérrez, and Michael González Harbour

Software Engineering and Real-Time Group

{fsainzj, perezh, gutierjj, mgh}@unican.es

http://www.istr.unican.es/

http://www.istr.unican.es/

Introduction
AFDX (Avionics Full Duplex Switched Ethernet) is a standard communication network for avionics
based on Ethernet links and special-purpose switches. This software provides an AFDX emulator
based on standard Ethernet hardware (cards and switches) which aims at building a low cost AFDX
network for training or basic research purposes. It is also possible to integrate the emulator within
an ARINC-653 platform.

The AFDX emulator is being developed at “Software Engineering and Real-Time Group” of the
University of Cantabria. It is not a finished product, but we share it hopping it can be useful for
educational or research purposes. This software is available under the GNU General Public License.

This user guide assumes that you feel comfortable with basic ARINC-664 and ARINC-653
concepts. Complete information about both technologies can be found on the following references
[1] [2] [3].

Target platform requirements
• Operating system: MaRTE OS v1.9

• Ethernet network cards with drivers available for your OS

• Network switch with support for traffic prioritization

• (Optional) XtratuM hypervisor if an ARINC-653 platform is required.

Installation
1. Installing Adacore GNAT compiler and MaRTE OS

Read the INSTALL file in MaRTE OS to perform this step. Before starting the installation of
MaRTE OS, you should make sure that your network card is supported by MaRTE OS and
the corresponding driver is added to the devices table (“marte-kernel-devices_table.ads”).
Furthermore, user should configure MaRTE OS to build the x86 or xtratum architecture
depending on the available platform to run the emulator. Further information can be found in
http://marte.unican.es/index.htm.

2. Switch configuration

The AFDX emulator requires configuring the network switch to be as deterministic as
possible. To this end, the internal traffic associated with third-party protocols must be
disabled: for instance, both the Spanning Tree protocol and the Neighbor Discovery Protocol
must be disabled, and the ARP protocol should be statically configured. Furthermore,
support for network traffic prioritization is also required to differentiate virtual links with
different priorities. Nowadays, most of the high-end switches support traffic prioritization
features based on the Class of Service/Quality of Service (CoS/QoS) technologies.

http://marte.unican.es/index.htm

Functionality
The AFDX emulator has basic functionality for transmission and reception of messages at the end
systems through the ARINC ports (sampling and queuing), allowing the configuration of Virtual
Links and also sub-Virtual Links, which are scheduled according to the traffic regulation rules
specified by the standard (Lmax and BAG parameters for Virtual Links, and round-robin policy for
sub- Virtual Links in a Virtual Link). Messages that cannot be sent in an Ethernet frame of length
Lmax are split in packets.

AFDX Emulator Internals
The AFDX emulator has been implemented in Ada and presents two different APIs: one for the
configuration of the network (end systems, Virtual Links, and communication ports); the other one
to allow the application tasks to send and receive messages through the emulated AFDX network.

Configuration API

A configuration API is provided in the package AFDX.Config where a set of procedures are given
in order to declare the information related to the configuration of the network for end systems,
Virtual Links and AFDX ports. This information will be statically defined at compilation time in
order to obtain a more efficient behavior of the emulator. The definition of the network
configuration has to be done in a child package called AFDX.Config.Definitions. It is
recommended to create a common definition package and share it among all the running end
systems, since each node will identify itself with an end system identifier based on the MAC
address, so that the appropriate set of Virtual Links and AFDX ports will be automatically created.

In a real AFDX network, end systems and switches contain static tables that we try to replicate with
this API. Thus, we have to define each of the running end systems in the network with the
procedure Add_ES. Each of these elements is identified with a number and shall be constructed
upon a unique MAC and IP addresses.

The properties of the Virtual Links are declared by means of the procedure Add_VL. A number to
identify the VL, the BAG and Lmax parameters, the identifier of the sending end system, and a list
of receiving end systems identifiers (only one destination is supported for the moment) should be
provided. We also have to provide the priority that will be used at the outgoing port of the switch;
this method allows avoiding the configuration of priorities at the switch level. The configured
priority will be set by the implementation in the Ethernet frame so that the switch can manage it
properly. The last parameter to be specified is the size of each sub-VL queue (up to four) that a VL
might have. Sub-Virtual Links configured with a size of zero are not used.

Finally, AFDX ports are defined through the procedures Add_Transmission_Port and
Add_Reception_Port, which respectively create a sending AFDX port at the sending end system
and a receiving AFDX port at the receiving end system. We have to provide an identifier, the kind
of port (sampling or queuing), the VL and sub-VL used for transmission, and the size of the
Inbound Buffer at the receiving end system. In order to simplify the mapping of transmission and
reception ports, we use the port number to make this mapping. Ports with the same number are
linked together.

Communications API

Applications can use the AFDX emulator through the communications API defined in the package
AFDX.System, which enables accessing the AFDX ports in order to send or receive data depending
on whether the end system is a source or a destination. The class AFDX_Port is defined by
inheritance from Ada’s Root_Stream_Type and Read and Write procedures exchange messages with
the AFDX ports declared in the configuration package AFDX.Config.Definitions. The Read
operation can be configured as blocking or non-blocking by specifying the Mode parameter in the
Bind procedure, which establishes the connection between AFDX_Port objects and the port
identifiers defined in the configuration.

A set of additional functions are provided in this API to obtain information about the characteristics
of AFDX_Port objects, in particular whether they support Read or Write operations, the kind of port
(queuing/sampling), the Read operation mode (blocking/non-blocking), or the freshness of data in a
sampling port. The value returned by the Freshness function corresponds to the last message
obtained by Read. Time_First is returned for a queuing port, or if Read has never been called for the
specific port.

Tests
A simple test is included to help in the development of new systems using the emulator. In this case,
the example interconnects two nodes and evaluates the usage of sub-Virtual Links in the AFDX
emulator. In particular, Client 1 and Client 2 are allocated in node 1 and each one executes a remote
blocking operation in node 2. Two data flows are defined: one to call the remote operation by
sending data from node 1 to node 2, and the other one to send the reply from node 2 to node 1. On
the one hand, the Write data flow uses one Virtual Link composed of two sub-Virtual Links (see
Figure 1). On the other hand, the Read data flows are implemented by using different Virtual Links.
In this example, AFDX frames are restricted to an Lmax value of 98 bytes, and the BAG is
configured to 1 ms for all the Virtual Links.

Figure 1. Example of usage

For this test, the “afdx-config-definitions.adb” files has the following configuration:

ES 1 (Client) ES 2 (Server)

MAC 00:02:44:3C:08:21 00:02:44:3B:6A:DE

IP 192.168.85.1 192.168.85.2

VL BAG Priority Lmax Source
ES

Destination
ES

Sub VL:
Queue size (bytes)

1 1 High 98 1 2 0 : 8192

1 : 8192

2 1 High 98 2 1 0 : 1024

3 1 Low 98 2 1 0 : 1024

Port Tx Rx

VL Sub VL Mode Buffer (bytes)

1 1 0 Queueing 8192

2 1 1 Queueing 8192

3 2 0 Queueing 1024

4 3 0 Queueing 1024

Once MaRTE OS is installed, the attached test can be compiled by executing the following
command:

>> mgnatmake -P proyecto.gpr -O2 -gnat2012 -Imarte_src_dirs

The attached test can be run using a bare machine or on top of XtratuM. Further information on this
can be found in the website of MaRTE OS. You can even use QEMU to check the functionality of
the software without relying on specific hardware. The provided script run.sh compiles and
executes the test in QEMU.

Known limitations
• Message filtering is not implemented

• Redundancy management is not implemented

• Multicast is not supported

• The AFDX emulator does not comply with some timing requirements specified by the

standard such as the typical technological latency in transmission, as this usually relies on
hardware.

References
1. Airlines Electronic Engineering Committee, Aeronautical Radio INC. “Avionics Application

Software Standard Interface”. ARINC Specification 653-1. March (2006).

2. Airlines Electronic Engineering Committee, Aeronautical Radio INC. “ARINC
Specification 664 P7-1: Aircraft Data Network, Part 7 - Avionics Full Duplex Switched
Ethernet Network”. September 23 (2009).

3. Jesús Fernández, Héctor Pérez, J. Javier Gutiérrez, Michael González Harbour. “AFDX
Emulator for an ARINC-Based Training Platform” Reliable Software Technologies – Ada-
Europe 2015. Lecture Notes in Computer Science Volume 9111, 2015, pp 212-227.

	Introduction
	Target platform requirements
	Installation
	Functionality
	AFDX Emulator Internals
	Configuration API
	Communications API

	Tests
	Known limitations
	References

